首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不等式的证明题中,常常会在给定条件或待证的不等式中含有“1”或与“1”有关的项.因此,熟知“1”的应用技巧并灵活运用,对学生拓宽解题思路、提高解题能力是十分有益的.下面就证明不等式时“1”的几个常用技巧做一总结.※“1”的等量代换法※当给定条件中有含“1”的等量关系式时,常常将“1”用式子等量代换到要证明的不等式中,对原不等式变形.[例1]已知x+y+z=1,证明x2+y2+z2≥13.证明:原不等式可变形为3(x2+y2+z2)≥1.∵x+y+z=1,∴3(x2+y2+z2)≥(x+y+z)2,左-右=3x2+3y2+3z2-(x+y+z)2=2x2+2y2+2z2-2xy-2yz-2zx=(x-y)2+(y-z)2+(z-x)2≥0∴原…  相似文献   

2.
文 [1 ]中用微积分方法证明了不等式 :(x +y +z)·1y2 +yz+z2 +1z2 +zx +x2 +1x2 +xy +y2>4 + 23,①其中x、y、z为任意正实数 .我们指出 ,由此不等式可导出一个关于三角形的费尔马和的不等式 :设△ABC的三边长分别为a、b、c ,其费尔马点在形内 (即所有内角都小于 1 2 0°) ,且到顶点A、B、C的距离分别为x、y、z,则(x+y +z) 1a+ 1b+ 1c >4 + 23.②事实上 ,当△ABC的费尔马点在形内 ,即所有内角都小于 1 2 0°时 ,有a =y2 +yz+z2 ,b =z2 +zx +x2 ,c =x2 +xy +y2 .此时式①直接化为式② .关于费尔马和的一个不等式@方廷刚$四川省成都市第七…  相似文献   

3.
观察下面三个问题 :( 1 )设a、b、c为△ABC的三边 .求证 :a2 b(a -b) +b2 c(b -c) +c2 a(c-a)≥ 0 .①(第 2 4届IMO)( 2 )若x、y、z∈R+,则x·x +yx +z+y·y +zy +x+z·z+xz+y≥x +y +z.②( 1 992 ,国际“友谊杯”数学邀请赛 )( 3)设x、y、z∈R+,求证 :x2 ·y +zy +x+y2 ·z+xz+y+z2 ·x +yx +z≥xy +yz+zx .③这三个不等式均不难证明 ,此处从略 .今将揭示他们之间隐含的内在联系 .1 .建立对应关系 ,揭示①可转化为②众所周知 ,对于任意△ABC的三边a、b、c,总可找到这样的正数x、y、z,使得a =y +z,b =z+x ,c =x +y .于是 ,式①化为(y+z…  相似文献   

4.
1999年加拿大数学奥林匹克竞赛有这样一道题目 :令 x,y,z是满足 x y z=1的非负实数 .证明 :x2 y y2 z z2 x≤ 42 7,并求不等式成立的条件 .简证 由于不等式是关于 x,y,z轮换对称的 ,故可设 x≥y≥z,从而  x2 y y2 z z2 x≤ x2 y 2 xyz=xy(x 2 z) =12 x· 2 y· (x 2 z)≤ 12 (x 2 y x 2 z3 ) 3=12 [2 (x y z)3 ]3=12 × (23) 3 =42 7.等号在 x=2 y=x 2 z时成立 ,即 x=23,y=13,z=0时成立 .若条件不变则结论可推广为 :xnym ynzm znxm≤ nn· mm(n m) n m(n>m,n,m∈ N) .证明 推广后的不等式仍是关于 x,y,z的轮换对称…  相似文献   

5.
一个不等式的下界估计   总被引:2,自引:0,他引:2  
文 [1]提出了如下猜想 :设 x,y,z∈R ,则xx y yy z zz x≤ 322 .1文 [2 ]中运用均值不等式和导数知识证明了 1式 .笔者将给出 1的左式的下界估计 :设 x,y,z∈R ,则xx y yy z zz x>1. 2证明 记 M=max{ x y,y z,z x} ,则有xx y yy z zz x>xM yM zM=(x y z ) 2M=(x y z) 2 (xy yz zx)M>x y zM >1.另证  xx y yy z zz x>xx y z yx y z zx y z=(x y z ) 2x y z=1 2 xy 2 yz 2 zxx y z >1.当 x→ 0 ,y→ 0时 ,2的左式→ 1.这说明常数 1是不等式 2的最佳下界一个不等式的下界估计@安振平$陕西省永寿县中学!7134001 刘保乾.试谈发现三…  相似文献   

6.
1.若(z-x)~2-4(x-y)(y-z)=0, 求证:x,y,z成等差数列。 [证一] (z-x)~2-4(x-y)(y-z) =z~2-2zx+x~2+4zx-4xy-4yz+4y~2 =(x+z)~2-2·2y(z+x)+4y =(z+x-2y)~2 =0,  相似文献   

7.
一个不等式的正确证明   总被引:1,自引:0,他引:1  
一个不等式 若x ,y ,z≥0 ,xy yz zx =1 ,则1y z 1z x 1x y≥52 ( =|x ,y ,z中一个为0 ,两个为1 ) . ( )据所知,( )式首出文[1 ],然后又见于文[2 ]、文[3 ],但其证明都隐含实质性缩小变量取值范围的错误.下面重予证明.证明:不妨设x≥y≥z≥0 ,由条件知x≥y >0 ,0≤yz≤13 ,x =1 -yzy z ,于是( )式 2 [(x y) (z x) (x y) ( y z) ( y z) (z x) ]≥5 (x y) ( y z) (z x) 2 [(x2 y2 z2 ) 3 (xy yz zx) ] ≥5 [(x y z) (xy yz zx) -xyz] 2 [(x y z) 2 1 ]≥5 [(x y z) -xyz] 2 (x y z) 2 -5 (x y z) 2 5x…  相似文献   

8.
孙毅 《中等数学》2003,(5):19-19
题目 已知x≥y≥z>0 .求证 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2 .这是第 3 1届IMO的一道预选题 ,原解答较繁 ,且技巧性强 ,这里给出一个相对简洁的证法 .证明 :由Cauchy不等式 ,有x2 yz +y2 zx +z2 xyx2 zy +y2 xz +z2 yx≥(x2 +y2 +z2 ) 2 .观察上式知 ,如有x2 yz +y2 zx +z2 xy ≥x2 zy +y2 xz +z2 yx ,则问题得证 .通分移项 ,有x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2 ≥0 .①故只须证式①成立 .x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2=x2 y2 (x-y) +y2 z2 (y-z) +x2 z2 (z-x)=x2 y2 (x -y) +y2 z2 (y -z) +x2 z2 ·(z-y +y -x)…  相似文献   

9.
先看下面不等式的证明过程:设x、y、z是非负实数,且满足x+y+z=1,求证:4(xy+yz+zx)-9xyz≤1。 证明:由对称性,不妨设x≥y≥z,则0≤z≤1/3,进而知4-9z>0。  相似文献   

10.
本文给出不等式x/(1 x xy) y/(1 y yz) z/(1 z zx)≤1(其中x,y,z∈R_ )的一种最简单的证法。这种证法只需引用不等式(a b c)(1/a 1/b 1/c)≥9 (*)其中a,b,c∈R~ 。 令a=x/(1 x xy),b=y/(1 y yz),c=z/(1 z zx)易知 1/a 1/b 1/c=1/x 1 y 1/y 1 z 1/z 1 x=3 (x 1/x) (y 1/y) (z 1/z)≥3 2 2 2=9,当且仅当x=y  相似文献   

11.
在代数学习中有一类不等式较难证明,但是这类不等式却有明显的几何意义,因此,可以构造几何图形来证明这类代数不等式.下举几例,供大家参考.一、构造三角形证明不等式例1设x、y、z均为正数,求证:!x2 xy y2 !y2 yz z2>!z2 zx x2.证明:构造图1所示的三角形,使AO=x,BO=y,CO=z,∠AOC=∠AOB=∠BOC=120°.由余弦定理,有AC2=x2 z2-2xzcos120°→AC=!z2 zx x2,AB2=x2 y2-2xycos120°→AB=!x2 xy y2,BC2=y2 z2-2yzcos120°→BC=!y2 yz z2.∵AB BC>AC,∴!x2 xy y2 !y2 yz z2>!z2 zx x2.二、构造长方形证明不等式例2设a、b、c、d都是正数,…  相似文献   

12.
一个不等式的推广   总被引:2,自引:0,他引:2  
文 [1 ]中有如下一个不等式 :设 0 相似文献   

13.
一个不等式的初等证明   总被引:1,自引:0,他引:1  
文 [1]给出并用微分法证明了如下不等式 :已知 x,y,z∈ (0 ,+∞ ) ,且 x+ y+ z=1,则(1x- x) (1y- y) (1z- z)≥ (83 ) 3 . (1)受此启发 ,笔者经探索得出如下一个初等证明 .证明 由基本不等式易得xyz+ yzx≥ 2 y,yzx+ zxy≥ 2 z,zxy+ xyz≥2 x.将上述三个不等式相加得xyz+ yzx+ zxy≥ x+ y+ z=1. (2 )又由 1=x+ y+ z≥ 3 3 xyz,得 xyz≤12 7.∴ (1x- x) (1y- y) (1z- z) =1xyz· (1- x2 ) (1- y2 ) (1- z2 ) =1xyz[(1+ x) (1+ y)(1+ z) ][(1- x) (1- y) (1- z) ]=1xyz(2 +xy+ yz+ zx+ xyz) (xy+ yz+ zx- xyz) =2(1x+ 1y+ 1z) - 2 + (xy+ yz+…  相似文献   

14.
单墫 《中学教研》2007,(1):37-38
已知 x,y,z 为正实数,求证:(xy yz zx)[1/(x y)~2 1/(y z)~2 1/(z x)~2]≥9/4 (1)甲:我在一本书上看到这题的解答,看不懂,太复杂了。老师有没有简单的做法?师:左边式子很复杂,我也得试一试.乙:是不是可以设 x y z=1?师:可以这样设,但未必有什么好处,因为∑xy 是比较小的,常见的不等式都是它的上界估计,而现在  相似文献   

15.
近年来,各省市中考及初中数学竞赛中,经常有最值问题出现,现举例说明·一、利用判别式求最值例1(2004年全国初中数学竞赛试题)实数x、y、z满足x+y+z=5①,xy+yz+zx=3②,则z的最大值是·分析:消去一未知数,使之变为z为参数的一元二次方程·解:由①得y=5-x-z③把③代入②得x(5-x-z)+z(5-x-z)+zx=3整理得:x2+(z-5)x+z2-5z+3=0因为x为实数,所以Δ≥0所以(z-5)2-4(z2-5z+3)≥0所以(3z-13)(z+1)≤0所以-1≤z≤133·二、利用非负数性质求最值例2多项式P=2x2-4xy+5y2-12y+13的最小值为·分析:将多项式配方,使之化为几个非负数之和·解:P=2x2-4xy+5y2…  相似文献   

16.
同学们在学习分式的时候,经常会遇到有关多元的求值问题,解答时,可以利用消元的方法,化难为易.一、取值消元法例1已知abc=1,那么aab+a+1+bbc+b+1+cca+c+1=.解:不失一般性,取a=1,b=1,c=1,则原式=13+13+13=1. 二、主元消元法例2已知4x-3y-6z=0,x+2y-7z=0,则5x2+2y2-z22x2-3y2-10z2等于(A)-12 (B)-192 (C)-15(D)-13 解:以x、y为主元,那么4x-3y=6z,x+2y=7z .∴x=3z,y=2z.∴原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.选D. 三、比值消元法例3已知x2=y3=z4,则x2-2y2+3z2xy+2yz+3zx的值是.解:设x2=y3=z4=k,得x=2k,y=3k,z=4k…  相似文献   

17.
再谈分式不等式证明中的代换法   总被引:2,自引:0,他引:2  
笔者在文[1] 中介绍了用分母代换法证明分式不等式的方法 ,作为其续篇 ,这里再介绍用分子代换 ,分式代换以及整体代换来证明分式不等式的思想方法 ,以便我们对证明分式不等式有一个较完整的思想方法体系 .1 分子代换如果所证不等式的分子比分母复杂 ,那么应考虑将分子代换 .例 1  (《数学教学》问题栏第 5 48题 )已知三角形的三边为a、b、c ,求证 :  b +c-aa + c +a-bb + a +b-cc >22 .证明 设b+c -a=x ,c +a-b=y ,a +b-c=z ,则x、y、z>0 ,且a =y +z2 ,b =z +x2 ,c =x+ y2 ,于是b +c-aa + c +a-bb + a +b-cc=2xy+z+ 2 yz+x+ 2zx+ y=2 xx…  相似文献   

18.
平均值不等式是高中数学的重要内容 ,熟练掌握二元和三元均值不等式及其变形应用 ,可以巧妙地解决许多数学题 .1 证明不等式这是最为大家常见问题 ,问题解决的关键是怎样根据题目提供的隐含条件去构造二元或三元均值不等式 .例 1 已知 x,y,z∈ R+且满足 xyz(x +y + z) =1 ,求证 :(x + y) (y + z)≥ 2 .证明 :(x + y) (y + z) =xy + xz + y2 + yz =y(x + y + z) + xz =y . 1xyz+ xz =1xz+ xz≥ 2 1xz. xz =2 .证毕 .此题从“2”这个数字 ,提示我们构造二元均值不等式 .2 求最值高中数学很多地方涉及求最值 ,利用均值不等式中等号成立的条…  相似文献   

19.
(本讲适合高中) 首先,让我们来看几个例子。 例1.设x,y,z都是非负实数,且x y z=1.求证:yz zx xy-2xyz≤7/(27)。 (1984,IMO—1) 证明 容易看出,当x=y=z=1/3时,所求证的不等式中等号成立。由对称性知,可设  相似文献   

20.
【问题3·9】已知正整数x,y,z满足方程5(xy+yz+zx)=4xyz,求x,y,z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号