首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
定理 过抛物线y2 =2px(p >0 )对称轴上一定点M(x0 ,0 )作一条直线交抛物线于A、B两点 ,若两交点的纵坐标为y1、y2 ,则y1y2 =- 2px0 (定值 ) .证明 设直线AB方程为x=my+x0 ,代入抛物线方程y2 =2px ,得y2 2mpy - 2px2 =0 .因为AB的纵坐标为y1、y2 ,由韦达定理得   y1y2 =- 2px0 .特别地 ,当M(p2 ,0 )时 ,y1y2 =-p2 .(高中《解析几何》课本 10 1页第 8题 )逆定理 一条直线和抛物线y2 =2px(p >0 )相交 ,若两交点的纵坐标为y1、y2 ,且满足y1y2 =A(定值 ) ,则这条直线恒过定点 (- A2…  相似文献   

2.
性质 1 如图 1,过点Q( -a ,0 ) (a >0 )的直线l与抛物线 y2 =2 px( p >0 )相交于M、N两点 ,H为 (a ,0 ) ,则∠MHQ =∠NHx .证明 设M (x1,y1) ,N(x2 ,y2 ) ,直线l:y=k(x a)  (k≠ 0 ) ,与抛物线方程 y2 =2 px联立 ,消去 y得k2 x2 ( 2ak2 - 2 p)x k2 a2 =0 .  由韦达定理知 x1x2 =a2 .又M、N在抛物线上 ,且在x轴的同侧 ,∴y1y2 =4 p2 x1x2 =2ap ,x1=y212 p,x2 =y222 p.由x1≠x2 ,知x1≠a ,x2 ≠a ,故直线MH、NH的斜率存在 .又kHM kNH =y1x1-a y2…  相似文献   

3.
圆锥曲线的一个奇妙性质   总被引:1,自引:0,他引:1  
熟知关于抛物线的一个命题 :过原点O任作抛物线y2 =2px的两条互相垂直的弦OP、OQ ,则直线PQ必过定点M1(2p ,0 )。对于抛物线上的任一点M(x0 ,y0 )来说是否也有同样的性质 ?探求如下 :设M(y202p,y0 ) ,P(y212p,y1) ,Q(y222p,y2 ) ,MP⊥MQ。则KPQ=2py1+y2,直线PQ的方程为(y1+y2 ) (y -y1) =2p(x - y212p) ,即  2px - (y1+y2 )y +y1y2 =0 (1)又由MP⊥MQ ,kMP·kMQ=- 1,得  2py0 +y1· 2py1+y0=- 1∴ y1y2 =-y0 (y1+y2 ) - 2px0 - 4p2 (2 )把 (2 )代入 (1)得…  相似文献   

4.
许多资料上都有这样一习题 :命题 1 O为原点 ,OA、OB是抛物线 y2 =2 px  ( p>0 )的两弦 ,若OA ⊥OB ,求证 :直线AB过定点P( 2 p ,0 ) .证明略 .2 0 0 0年春季高考数学 2 2题就是由此题改编而成 .试题 设A ,B为抛物线y2 =4 px  ( p>0 )上原点以外的两个动点 ,已知OA⊥OB ,OM ⊥AB于M ,求点M的轨迹方程 .略解 由命题 1知直线AB过定点P( 4 p ,0 ) .∵OM ⊥AB ,即OM⊥PM .∴M点的轨迹是以OP为直径的圆 ,除去O点 ,即方程为(x- 2 p) 2 y2 =4 p2   (x≠ 0 ) .  如果我们把命题 1中…  相似文献   

5.
问题 设M(x0,y0)是抛物线y2=2px的弦AB的中点,试求直线AB的斜率k.解 设A(x1,y1)、B(x2,y2),则y1+y2=2y0,且y12=2px1,y22=2px2.∴y12-y22=2p(x1-x2),故k=y1-y2x1-x2=2py1+y2=py0.(当y0=0时,k不存在)同理若M(x0,y0)是抛物线x2=2py的弦AB的中点,则kAB=x0p.显然,用抛物线弦的中点坐标可以很方便地表示出弦所在直线的斜率,与中点弦相关的许多问题都可以此为基础较方便地解决,现举例如下:…  相似文献   

6.
本文给出圆锥曲线弦的中点坐标与该弦的垂直平分线的截距之间的关系 ,并举例说明它的应用 .定理 设圆锥曲线中与坐标轴不平行的弦P1P2 的中点为M (x0 ,y0 ) ,该弦的垂直平分线l与x轴的横截距为a ,与 y轴的纵截距为b .(1)对于椭圆或双曲线  x2A + y2B =1  (A >0 ,B >0或AB <0 ) ,有 a=A-BA x0 , b=B-AB y0 ;(2 ) 对于抛物线 y2 =2 px  (p ≠ 0 ) ,有  a=x0 + p , b=y0p(x0 + p) ;(3)对于抛物线x2 =2 py  (p≠ 0 ) ,有  a=x0p(y0 + p) , b =y0 + p .证明  (1) 设P1(x1…  相似文献   

7.
在抛物线与直线的关系中 ,过抛物线焦点的直线与抛物线的关系尤为重要 ,这是因为在这一关系中具有一些很有用的性质 ,这些性质常常是高考命题的切入点 .本文对此作一些探讨 .不妨设抛物线方程为 y2 =2 px( p>0 ) ,则焦点F p2 ,0 ,准线l的方程 :x=-p2 .过焦点F的直线交抛物线于A(x1 ,y1 )、B(x2 ,y2 )两点 ,又作AA1 ⊥l,BB1 ⊥l,垂足分别为A1 、B1 .AB⊥x轴时 ,x1 =x2 =p2 ,A p2 ,p ,B p2 ,-p ,此时弦AB叫抛物线的通径 ,它的长|AB| =2 p .AB与x轴不垂直也不平行时 ,设弦AB所在直线的斜率为…  相似文献   

8.
一、直接由题设得不等关系 ,求得结果若问题中给出了某相关参数的取值范围 ,而所求参数依赖于已知参数 ,则可先建立起它们之间的关系 ,再利用已知参数的范围求得未知参数的范围 ,从而达到解决问题的目的 .例 1 已知双曲线C :x2 + 1-t2t2 y2 =1(t>1)的右支分别与x轴及直线x + y =0相交于A、B两点 .以A为焦点 ,对称轴是x轴且开口向左的抛物线经过点B ,设抛物线的顶点为M .求当双曲线的一条渐近线的斜率在 415 ,+∞ 上变化时 ,直线BM的斜率的变化范围 .解 :由y=-x ,x2 + 1-t2t2 y2 =1,得B(t,-t) .设M (m ,0 ) ,由…  相似文献   

9.
笔者在研究抛物线的有关问题时 ,意外地得到了抛物线切线的几个性质及其判定方法 ,现以定理的形式介绍如下 :定理 1 P是抛物线 y2 =2 px上一动点 ,M是点P在准线上的射影 ,F为焦点 .过P点的直线l是该抛物线切线的充要条件是直线l垂直于直线MF .     图 1说明 设P点坐标为 (x0 ,y0 ) ,则M(-p2 ,y0 ) ,F(p2 ,0 ) ,当P点为抛物线顶点 ,即 y0=0时 ,定理显然成立 ;当P点不为抛物线顶点 ,即 y0 ≠ 0时 ,充分性 由题设知直线MF的斜率   kMF =y0- p2 - p2=- y0p.因直线l⊥MF ,且P∈l,由直线方程的…  相似文献   

10.
今年高考“3 X”型数学试卷理科第 1 9题(文科第 2 0题 )是 :设抛物线y2 =2px(p >0 )的焦点为F ,经过焦点F的直线交抛物线于A、B两点 ,点C在抛物线的准线上 ,且BC ∥x轴 ,证明 :直线AC经过原点 .一、试题的背景揭示该试题是《平面解析几何》(全一册 ,必修 )第 1 0 0页习题八的第 8题 :“过抛物线y2 =2px(p>0 )的焦点的一条直线和这条抛物线相交 ,两个交点的纵坐标为y1 ,y2 ,求证 :y1 y2=-p2 ”的改变题 .二、过抛物线的焦点弦的性质设抛物线y2 =2px(p>0 )的焦点为F ,经过焦点F的直线交抛物线于A、B两点 ,若…  相似文献   

11.
在解析几何中当直线过定点 (x0 ,y0 )时 ,学生在解题时往往只会机械地套用点斜式 ,将该直线方程设为y- y0 =k(x-x0 ) ,这当然没有错 ,但有时会出现下列情况 :(1)容易忽视对斜率不存在的情形 ;(2 )运算较繁 ,有时还会陷入僵局 .如果当我们知道这样的直线斜率不为零时 ,也可将其方程设为x -x0 =m(y- y0 ) .这样不仅可以避免讨论直线斜率存在性 ,而且有时可大大简化运算 .例 1 过抛物线y2 =2 px的焦点的一条直线和这条抛物线相交 ,两个交点的纵坐标为 y1,y2 ,求证 :y1·y2 =- p2 .解 显然过焦点的直线的倾斜角不为零 ,故…  相似文献   

12.
定理 设四边形ABCD的边为a、b、c、d ,外接圆半径为R ,则R =(ab cd) (ac bd) (ad bc)4 papbpcpd,其中 p为半周长 ,pa=p -a ,等等 .证明 :如图 ,用余弦定理 ,得cosA =a2 d2 -x22ad ,cosC =b2 c2 -x22bc .应用cosA cosC =0 ,记k1=(ab cd) (ac bd) ,k2 =ad bc,则解得x2 =k1k2.应用三角形外接圆半径公式 ,得R△BCD=xbc4 p′px′pb′pc′  ( p′=12 (x b c) ,px′=p′ -x ,等等 ) ,则有R2 =R△BCD2 =x2 b2 c21 6p′…  相似文献   

13.
在平面仿射变换里 ,对平面内任一点M(x ,y)施行变换x′ =xy′ =μy   ( μ >0 ,且 μ≠ 1)   ( 1)把点M压缩到另一点M′(x′ ,y′)的仿射变换 ,称之为压缩变换 ,常数 μ称为压缩系数。一、作为仿射变换特例 ,压缩变换除了具有仿射变换的性质以外 ,还具有如下性质 :性质 1:若直线l的斜率为k ,经压缩变换x′ =xy′ =μy( μ >0 ,且 μ≠ 1)后 ,它的象直线l′的斜率k′ =μk。证明 :设A(x1,y1)、B(x2 ,y2 )是直线l上两点 ,A′(x′1,y′1)、B′(x′2 ,y′2 )及l′分别是A、B及l的象。则x′1=x1,y′…  相似文献   

14.
本刊 2 0 0 1年第 5期文 [1]给出了抛物线的两条互逆性质 ,读后颇受启发 ,但尚觉意犹未尽 .我们自然要问 :椭圆、双曲线有没有类似的性质呢 ?我们把文 [1]关于抛物线的两条性质及推论抄录如下 :     图 1性质 1.1 过点Q(-a ,0 ) (a>0 )的直线与抛物线 y2 =2 px(p>0 )相交于M、N两点 ,H为 (a ,0 ) ,则∠MHQ =∠NHx .性质 1.2 M、N是抛物线y2 =2 px(p>0 )上非顶点且位于x轴同侧的两点 ,H为 (a ,0 ) (a>0 ) ,Q为 (-a ,0 ) ,若∠MHQ =∠NHx ,则直线MN交x轴于点Q .当性质 1.1、1.2中的M、N两点…  相似文献   

15.
有关圆锥曲线弦的二端点与原点连线的斜率问题 ,涉及解析几何中许多重要的知识点 ,在各种考试的试题中经常出现 .若用常规方法解决 ,运算量大、过程冗繁 .本文通过实例介绍这类问题的一种简捷解法 .例 1  (1993年上海市高考试题 )抛物线 y=- 12 x2 与过点M(0 ,- 1)的直线l相交于A、B两点 ,O为坐标原点 .若直线OA与OB的斜率之和为1,求直线l的方程 .解 设直线l的方程为 y =kx- 1,即 1=kx-y .代入抛物线方程 2 y· 1+x2 =0得    2y(kx- y) +x2 =0 .整理后两边同时除以x2 ,有   2 (yx) 2 - 2k· (yx) - …  相似文献   

16.
柯西不等式法 P(x0 ,y0 )为定点 ,Q(x ,y)为直线Ax By C =0 (A2 B2 ≠ 0 )上的动点 ,则A(x -x0 ) B(y -y0 ) =-(Ax0 By0 C) .由柯西不等式 ,则(A2 B2 ) |PQ|2 =(A2 B2 ) [(x -x0 ) 2 (y -y0 ) 2 ]≥ [A(x -x0 ) B(y-y0 ) ]2  相似文献   

17.
1999年第 5期《数学教学研究》刊登了袁良佐老师“双曲线中点弦性质的应用”和王景斌老师“抛物线弦的中点问题”两篇文章 ,读后颇有启发 .本文给出椭圆中点弦的一个性质 ,并举例说明它的应用 .性质 设A、B是椭圆x2a2 y2b2 =1(a >0 ,b >0 )上两点 ,P(x0 ,y0 )是弦AB的中点 ,则有kAB·kOP=- b2a2 .证明 设A(x1 ,y1 ) ,B(x2 ,y2 )是椭圆 x2a2 y2b2= 1上两点 ,则有x21 a2 y21 b2 =1,  x22a2 y22b2 =1,两式相减 ,得  x21 -x22a2 y21 - y22b2 =0 ,即 (x1 x2 ) (x1 -x2 )a2 …  相似文献   

18.
《中学数学杂志》2 0 0 1年第 6期《曲线的运动与变换》一文中有一个结论是 :“函数y =f(x)定义在R上 ,则函数 y =f(ωx A)与y=f(B-ωx)的图象关于直线x =B-A2 对称” .我认为 ,函数 y= f(ωx A)与 y =f(B -ωx)的图象关于直线x= B-A2ω 对称 .事实上 ,若点M(x0 ,y0 )是函数 y =f(ωx A)图象上任意一点 ,则 y0 =f(ωx0 A) .设点M关于直线x =B-A2ω 的对称点为N(x′,y′) ,则有x0 x′2 =B-A2ωy0 =y′ x′=B -Aω -x0 ,y′=y0因为 f(B -ωx′) =f[B-ω(B-Aω -x0 ) ] =…  相似文献   

19.
直线方程x0x/a^2+y0y/b^2=1的几何意义   总被引:6,自引:0,他引:6  
文 [1]给出了直线方程x0 x y0 y =r2 的三种几何意义 .笔者认为直线方程 x0 xa2 y0 yb2 =1也有类似的几何意义 .先求经过椭圆 x2a2 y2b2 =1(a >0 ,b >0 )上一点P(x0 ,y0 )的切线方程 .设切线的斜率为k ,则其方程为y - y0 =k(x -x0 )或y=k(x -x0 ) y0 .将y的表达式代入椭圆方程 ,得x2a2 [k(x -x0 ) y0 ] 2b2 =1.化简并整理为x的二次方程就是(b2 a2 k2 )x2 - 2a2 k(kx0 - y0 )x a2 (kx0 -y0 ) 2 -a2 b2 =0 .  由于点P(x0 ,y0 )是切点 ,所以x0 是这个方程的二重实…  相似文献   

20.
函数 y =x4 +px2 +q的性质及应用在各类考卷中经常出现 ,笔者在此给出其应用较为广泛的两个性质———单调性和恒成立性。性质 1 对于函数y =x4 +px2 +q  (p、q∈R) ,(Ⅰ ) p≥ 0时 ,单调减区间为 (-∞ ,0 ];单调增区间为 (0 ,+∞ )。(Ⅱ ) p <0时 ,单调减区间为 (-∞ ,--p/2 ]和 [0 ,-p/2 ];单调增区间为 [--p/2 ,0 ]和[-p/2 ,+∞ )。下面用复合函数单调性理论来证明 (Ⅱ )。令u =x2 ,则 y =u2 +pu +q ,显然u =x2 在x∈ (-∞ ,0 ]上是减函数 ,在x∈(0 ,+∞ )上是增函数 ,y=u2 +pu +q在u∈ (-∞ ,-p…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号