首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设ai、bi∈R(i=1,2,…,n),则(n∑i=1a2i·n∑i=1b2i≥(n∑i=1aibi)2),等号当且仅当(a1/b1=a2/b2)=…=an/bn时成立,这就是著名的柯西不等式.若在此不等式中作如下代换:令ai=(√xi),bi=(√yi),即得如下定理:  相似文献   

2.
柯西不等式:设a1,a2,…,an,b1,b2,…,bn∈R,则(a12+a22+…+a2n)(b12+b22+…+b2n)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.柯西不等式具有对称和谐的结构特征,应用关键在于构造两组数ai,bi(i=1,2,…,n),进行合理的变形,找准解  相似文献   

3.
本文将柯西不等式:设ai、bi∈R(i=1,2,…,n),则(n∑i=1aibi)2≤(n∑i=1a2i)(n∑i=1b2i).  相似文献   

4.
柯西不等式 设a1,a2,…,an,b1,b2,…,bn∈R,则(a1^2;+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+anbn),当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.  相似文献   

5.
柯西不等式:对于任意实数ai,bi(i=1,2,…,n)有 (a1b1 a2b2 … anbn)2≤(a12 a22 … an2)(b12 b22 … bn2),当且仅当ai=kbi(k为常数)时成立. 柯西不等式揭示了任意两组实数积之和的平方与平方和之积间的大小关系,应用十分广泛.下面以近十年来的“希望杯”试题为例,供同学们参考.  相似文献   

6.
文[1]给出柯西不等式的一个有趣推广,本文将其作进一步的推广,得到: 定理设Pi∈R^+,贝4(p1a1^m+P2a2^m+…+pnan^m)(p1b1^m+p2b2^m+…+pnbn^m)≥1/n^m-2(p12/m·a1b1+p2^2/ma2b2+…+pn^2/manbn)^m,其中m,n∈N^+,当m为奇数时,ai〉0,bi〉0,i=1,2,…,n;当m为偶数时,ai,b;可为任意实数,i=1,2,…,n.  相似文献   

7.
1柯西不等式的基本形式及推广由文献知柯西不等式(cauchy)表述为:对任意a1,a2…,aa;b1,b2…ba∈R,有(a1b1 a2b2 … anbn)2(a21 a22 …a2n)(b21 b22 …b2n),当且仅当a1b1=a2b2=A=anbn时,等号成立(简记为∑ni=1aibj2n∑i=1a2i∑ni=1b2i).柯西不等式有着非常广泛的应用,下面先介绍  相似文献   

8.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

9.
设ai和bi(i=1,2,…,n)都是实数,则(a12 a22 … a2n)(b12 b22 … b2n)≥(a1b1 a2b2 … anbn)2(1)(1)当且仅当ai=kbi(i=1,2,…n)时成立等号,这就是通常所说的哥西不等式.由该不等式很容易得到一个推,实际上,在不等式(1)中,令ai=xiyi,bi=yi(i=1,2…n)得:x12y1 xy222 … yx2nn(y1 y2 … yn)≥(x1 x2 … xn)2xy121 yx222 … yx2nn≥(x1 x2 … xn)2y1 y2 … yn(2)我们把不等式(2)称为哥西不等式推广即:设xi∈R,yj∈R (i=1,2,…,n),则yx121 yx222 … yx2nn≥(xy11 xy22 …… xynn)2,当且仅当xy11=yx22=…=yxnn时成立等号.哥西不等式推广在处理…  相似文献   

10.
完整的柯西不等式通常是在进入大学后才具体见识和应用的,是解决相关数学问题最常用的定理之一.它的一般形式为:对于任意实数ai,bi(i=1,2,…,n),有(a1b1+a2b2+…+anbn)^2≤(a^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2),其中当且仅当ai=kbi,即ai与bi(i=1,2,…,n)成比例时取到等号.  相似文献   

11.
设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则(a12+a22+…+a2n)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.  相似文献   

12.
设a1,a2,a3,…,an;b1,b2,b3,…,bn是任意两组实数,则有((n∑i=1)aibi)2≤((n∑i=1)ai2)·((n∑i=1)bi2)当且仅当a1/b1=a2/b2=…=an/bn时,取"="号,这就是柯西不等式.  相似文献   

13.
柯西不等式是指:对于ai,bi∈R(i=1,2,…,n),有(n∑i=1 aibi)2≤(n∑i=1 ai2)·(n∑i=1 bi2)i=1.这个不等式以对称的结构,广泛的应用,以及证法的多样性,引起了广泛的兴趣和讨论,下面给出几种新的证法.  相似文献   

14.
本文讨论了n个正整数的和与积相等的一个必要条件,并证明了两个与素数、合数有关的结论. 结论1:若n(n≥2)个正整数a1,a2,…,an满足条件n∑i=1ai=n∏i=1ai,则ai≤n(i=1,2,…,n). 证明:(1)当n=2时,a1·a2-(a1+a2)=(a1-1)·(a2-1)-1≥0,当且仅当a1=a2=2时等号成立,故a1·a2=(a1+a2)时a1≤2,a2≤2,符合结论1. (2)当n≥3时,设a1≤a2≤…≤an.令a1=a2=…=an-2=1,an-1=2,an=n,则n∑i=1ai=n∏i=1ai=2n.此时ai≤n(i=1,2,…,n). 又设存在n(n≥2)个正整数b1,b2,…,bn满足条件1≤b1≤b2≤…≤bn-1≤bn,bn>n,且n∑i=1bi=n∏i=1bi.不妨令bi=1+ti(i=1,2,…,n-1,ti∈N),bn=n+tn(n∈N+).  相似文献   

15.
用一不等式巧解一串竞赛题   总被引:2,自引:1,他引:2  
命题:若ai∈R,bi∈R+(I=1,2,…,n),则∑a2i/bi≥(∑ai)2/∑bi,当且仅当a1/b1=a2/bn=…=an/bn时等号成立.  相似文献   

16.
柯西不等式 设a1,a2,…,an,b1,b2,…,bn均是实数,则有 (a1b1 a2b2 … anbn)2 ≤(a12 a22 … an2)(b12 b22 … bn2)等号当且仅当ai=λbi(λ为常数,i=1,2,…,n)时成立. 向量形式 设n维向量α(a1,a2,…,an),β(b1,b2,…,bn),则有 α·β≤|α|·|β|,当且仅当α∥β时取等号. 推论1 设a1,a2,…,an,b1,b2,…,bn均是实数,则有(a12 a22 … an2)~(1/2) (b12 b22 … bn2)~(1/2)  相似文献   

17.
最值问题中,有一类在给定条件下求最大值的问题,可用构造条件的方法求解。现介绍如下: 有关定理(柯西不等式): 对于任意实数a_i,b_i(i=1,2,…n),有:(a1b1+a2b2+…+a_nb_n)~2≤(a~21+a~22+…+a~2n)·(b~21+b~22+…+b~2n).其中,当且仅当a_i=kbi时取等号。 由柯西不等式,易得如下推论: 如果:(a~21+a~22+…+a~2n=S2(常数S>0) b~21+b~22+…+b~2n=t~2(常数t>0) 那么:a1b1+a2b2+…+a_nb_n≤S·t,当且仅当a_i/b_i=s/t(i=1,2,…,n)时,取等号,即a1b1+a2b2+…+a_nb_n有最大值s·t. 例1:已知:a2+b2+c2=1,求的最大值。 分析:为了利用推论,必须  相似文献   

18.
文[1]利用均值不等式给出一道最值问题的通解(法一),并将该问题作了进一步的推广;文[2]用向量法对该问题及其推广进行解答(法二).本文将应用空间几何知识和柯西不等式,给出该问题及其推广的另外两种解法(法三,法四). 文[1]的问题及其推广是: 问题 已知a,b,c,x, y,z 是实数,a2 b2 c2=1, x2 y2 z2 = 9 ,求ax by cz 的最大值. 问题推广 已知ai,bi(i =1,2,L,n)且∑an n n 2 = p, 2 i ∑b i = q ,求 aibi 的最大值. ∑ i=1 i=1 i=1 …  相似文献   

19.
构造函数解决与不等式相关问题是很常见的,但通常都是构造单调函数,并利用其单调性来完成解答.本文介绍一种新的构造方法,它不是利用函数的单调性,而是应用函数值在其变量取值范围内有确定符号来解题.下面举例来加以说明.例1已知a1,a2,…,an,b1,b2,…,bn∈[1,2],且∑ni=1ai2=∑ni=1bi2.求证:∑ni=1ai3bi≤1107∑i=n1bi2.证明:构造函数f(x)=(x-12)(x-2)(x+25),则当21≤x≤2时,f(x)≤0故x3-2101x2+52≤0,即x3≤2101x2-52.又21≤abii≤2,所以abi33i≤1210ba2ii2-52,所以ab3ii≤2101ai3-25bi2.故∑ni=1ai3bi≤2110∑i=n1a2i-52∑i=n1bi2=2101∑i…  相似文献   

20.
柯西不等式: 设αi,bi∈R(i=1,2,…,n),则 (α1^2+α2^2+…+αn^2)(b1^2+b2^2+…+bn^2)≥(α1b1+α2b2+…+αnbn)^2,当且仅当αi=kbi,i=1,2,…,m时等号成立.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号