首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
引理不定方程x~2-y~2=c(c∈Z)有整数解的充要条件是c■2(mod4)。证:必要性。若存在整数x、y使x~2-y~2=c■(x y)(x-y)=c,∵x y、x-y同奇偶,∴c是奇数,或者4|c,故c■2(mod4)。充分性。设c■2(mod4),则ⅰ)c≡0(mod4),c/4 1,c/4-1∈z,而(c/4 1)~2-(c/4-1)~2=c,即x~2-y~2=c有整数解(c/4 1,c/4-1)。ⅱ) c≡1(mod4)或c≡3(mod4),(c 1)/2,(c-1)/2∈Z,((c 1)/2)~2-((c-1)/2)~2=c,方程x~2-y~2=c有整数解((c 1)/2,(c-1)/2)。引理证毕。对不定方程x_1~2 x_2~2 … x_n~2=x_(n 1)~2,若令x_i  相似文献   

2.
参考文献中"5121=125+1759+1208725"是5121的第一类好表法,我们通过讨论认为:由于5121的第一类好表法不是唯一的,该问题就是讨论"不定方程5121=1x+1y+1z(xb,a|n,b|n,m|a+b,且  相似文献   

3.
模型1 不定方程x1 x2 … xm=n(其中m,n∈N* 且m≤n)有C(n-1)(m-1)组正整数解. 分析 此题可以理解为将正整数n分解成m个正整数的和,而 相当于在这n-1个" "号中选m-1个" ",故有C(n-1)(m-1)种选法,所以 方程共有C(n-1)(m-1)组正整数解. 模型2 不定方程 x1 x2 … xm=n (其中m,n∈N*且m≤n)有C(n m-1)(m-1)组非负整数解. 证明 令xi=yi-1(i=1,2,…,m),则 yi=xi 1,yi∈N*,所以原方程的非负整数解问题就转化为方程 y1 y2 … ym=n m  相似文献   

4.
中师部编教材《代数与初等函数》第二册第八章第三节中的定理3是这样叙述的:“设不定方程αx by=c(α>0,b>0)有一个整数解x_0,y_0,则它的全部整数解可以表示成 x=x_0 bt y=y_0-αt其中t为任何整数。”我认为这一定理中关于解的一般形式值得商榷,按定理给出的解的一般形式,对有些不定方程漏掉了许多解。如:解不定方程4x 6y=10,因为x=1,y=1是这个方程的一个整数解,直接应用定理,得它的全部整数解集为A={(x,y):x=1 6t,y=1-4t,t∈z}。另一方面方程4x 6y=10又等价于2x 3y=5,这样,  相似文献   

5.
对于二元一次不定方程ax by=c,这里a,b,c为整数,且(a,b)=1,在利用通解公式{x=x_0 bt y=y_0-at;(t为整数),求它的整数解时,特解x_0,y_0的求法是难点,也是关键.  相似文献   

6.
给出了不定方程mx+2y+z=n(m≥3,n≥m+3)的正整数解以及非负整数解的个数的计算公式.同时也给出了将正整数n拆分成若干个1,2和m的拆分数的表达式.进一步给出了x1+2x2+3x3+4x4=n的正整数解的个数以及关于一般情形下的不定方程的正整数解的个数的递推关系.  相似文献   

7.
利用递归数列、同余式证明了不定方程x3-1=38y2仅有整数解(x,y)=(1,0),从而得知关于不定方程x3-1=Dy2(0<D<100)的全部整数解的情况.  相似文献   

8.
1.方程思想例1等差数列{an}的前n项和记为Sn.已知a10=30,a20=50(Ⅰ)求通项an;(Ⅱ)若Sn=242,求n.解:(Ⅰ)由an=a1+(n-1)d,a10=30,a20=50,得方程组(?)a1+9d=30,a1+19d=50.解得a1=12,d=2.所以an=2n+10.(Ⅱ)由Sn=na1+(n(n-1))/2d,Sn=242得方程12n+(n(n-1)/2×2=242.解得n=11或n=-22(舍去).2.函数思想例2已知等差数列{an}中,a1≠0,前n项和为Sn,且S1=S2005,S9=Sn,求n的值.解:因为点P(n,Sn)在函数y=d/2x2+(2a1-d)/2x的图象上,且S1=S2005所以抛物线的对称轴为x=1003又S9=Sn,所以(n+9)/2=1003,即n=19973.整体思想例3等差数列{an}的前n项和为Sn,且S10=100,S100=10,求S110.解:S100-S10=a11+a12+…+a100=(a11+a100)/2×90又S100-  相似文献   

9.
给出了不定方程mx 2y z=n(m≥3,n≥m 3)的正整数解以及非负整数解的个数的计算公式.同时也给出了将正整数n拆分成若干个1,2和m的拆分数的表达式.进一步给出了x1 2x2 3x3 4x4=n的正整数解的个数以及关于一般情形下的不定方程的正整数解的个数的递推关系.  相似文献   

10.
一些排列组合问题 ,可以用不定方程的正整数解的组数来确定排列组合数 ,这样的求解方法 ,事半功倍 ;但有时需事先处理构造 ,且主要依据以下 2个问题的结论 :问题 1:试求不定方程 x1+ x2 + x3 +… + xm =n ( m≥ 2 ,n≥ 2 ,m≤ )的正整数解的组数 .由于 n1≥ 1,x2 ≥ 1,… ,xm ≥ 1,把 n分成 n个 1,其间有 n- 1个空档 ,插入 m - 1块“挡板”,把 n个 1分成m个部分 .则每一种情况对应不定方程的一组解 ,所以原不定方程共有 Cm- 1n- 1组解 .问题 2 :试求不定方程 x1+ x2 + x3 +… + xm =n ( m≥ 2 ,n∈ N )的非负整数解的组数 .分析 :把方程 x1…  相似文献   

11.
例用平面上的点表示不定方程3x 4y=1的整数解。解由观察法易知不定方程3x 4y=1的一个整数解为,则其全部整数解为  相似文献   

12.
题目:求不定方程的整数解。解设(x+y)~(1/2)=m,则(x+m)~(1/2)=y,即.与原方程比较,得y=m.即y≥0,故x≥0,命(1+4x)~(1/2)=2n-1,则  相似文献   

13.
批注之谜     
我们知道,x+y=z是一个三元一次不定方程,它的正整数解有无穷多个.x2+y2=z2是一个三元二次不定方程,它的正整数解也有无穷多个.同学们在初中平面几何中学过勾股定理,根据这个定理,直角三角形三条边的长就满足这个方程.有人必然要问:x3+y3=z3、x4+y4=z4有没有正整数解呢?一般地说来,xn+yn=zn(n是大于2的整数)有没有正整数解呢?最早提出这个问题的是法国数学家费尔马  相似文献   

14.
一次不定方程是竞赛中常考常新的内容,它主要依据下面的定理如果x=x0 y=y0 是二元一次不定方程ax+by=c的一组整数解,那么x=x0-bt y=y0+at(t为任何整数)是ax+by=c的一切整数解.并称此解为原方程的通解,x=x0,y=y0为原方程的一组特解.  相似文献   

15.
我们已经知道二元一次不定方程ax+by=c(a,b,c都是整数,且(a,b)=1)的通解可由公式x=x0+bt y=y0-at(t是整数)来表示,而三元一次不定方程组a1x+b1y+c1z=d1, a2x+b2y+c2z=d2(ai、bi、ci都是整数,且(ai、bi、ci)=1,i=1,2)的通解是什么?通过探讨,得到如下定理:  相似文献   

16.
<正>许多组合问题看似与方程无关,若能去伪存真,转换思维角度,转化为不定方程整数解的模型,则往往能化繁为简、柳暗花明.1不定方程整数解的有关结论定理1不定方程x_1+x_2+…+x_k=n(k,n∈N+)的非负整数解的个数为C_(n+k-1)n.证法1将不定方程x_1+x_2+…+x_k=n的任意一组非负整数解(x_1,x_2,…,x_k)对应于一个由n个圆  相似文献   

17.
本文就"85年高考数学理科第八题",谈中学数学中运用集合知识解一类综合题的规律.一我们从85年高考数学(理科)第八题谈起.题目:设a,b是两个实数,A={(x,y)|x=n,y=na+b,n是整数},B={(x,y)|x=m,y=3m~2+15,m是整数},C={(x,y)|x~2+y~2≤144},是平面AOY内的点集合,讨论是否存在a和b,使得(1)A∩B≠  相似文献   

18.
本文的目的是用初等方法推导不定方程X~2 (?)Y~2=Z~2与X~2 (?)Y~2=Z~2(p_1,p_2,…,p为n个不同的奇素数)适合x>0,y>0,z>0,(x,y)=1,2|y的一切整数解的具体计算公式,并引出解的集合的结构。  相似文献   

19.
研究函数,常要求函数值域。本文介绍一些无理函数值域求法。 1.y=(ax b)~(1/2)(a≠0)型分析 这种类型的无理函数是最基本的。从观察不难看出值域为{y|y≥0且y∈R}. 2.y=px q±(ax b)~(1/2)型 例1 求y=x 4 (2x 4)~(1/2)的值域。 解令t=(2x 4)~(1/2)(t≥0)则x=(t~2-4)/2(t≥0). ∴原函数为y=(t~2-4)/(2) 4 t=((t 1)~(2) 3)/2 (t≥0), ∴y≥2,原函数值域为{y|y≥2且y∈R}.  相似文献   

20.
从两个最基本的不定方程x2 y2=z2和x2-dy2=1以及它们的相关定理出发,讨论了不定方程x2 (x 1)2=z2的正整数解的通项公式,并对n取特殊值的情况进行了赋值运算,结果验证了它的所有正整数解的通项公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号