首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
人教版全日制普通高级中学教科书(试验修订本)《数学》第三册(选修Ⅰ)第64页例2:已知曲线y=1/3x3上一点P(2,8/3),求:(1)过点P的切线的斜率;(2)过点P的切线方程.  相似文献   

2.
一、混淆曲线y=f(x)在点P处的切线与过点P的切线例1已知曲线y=f(x)=(1/3)x~3上一点P(2,8/3),求过点P的切线方程。错解:f′(x)=x~2.设过点P的切线的斜率为k,则k=f′(2)=4.  相似文献   

3.
高中《数学》第三册(选修Ⅰ)第37页例2已知曲线y=31x3上一点P(2,83).求:(1)过点P的切线的斜率(2)过点P的切线方程该例题教材给出的解法是错误的,现摘录如下:错解:(1)y′=(31x3)′=x2∴y′|x=2=22=4即过点P的切线的斜率为4(2)根据直线方程的点斜式,过点P的切线方程为y-38=4(x-2)  相似文献   

4.
题1已知曲线C:f(x)=x~3-x 2,求经过点P(1,2)的曲线C的切线方程.学生的解答雷同:解由f′(x)=3x~2-1得切线的斜率k=f′(1)=2,所以过点P(1,2)的曲线C的切线方程为y-2=2(x-1),即y=2x.分析解题时犯了审题不清的错误.此处所求的切线只说经过P点,并没有说P点一定是切点.故切线的斜率k与f′(1)不一定相等.  相似文献   

5.
1.问题高中新教材数学第三册114页谈到导数的几何意义:曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f’(x0),切线方程为: y-y0=f'(x0)(x-x0) (*)所以可利用导数求曲线的切线方程. 问题1 点P不在曲线上如何用导数方法求过点P的切线方程? 问题2 点P在曲线上,过点P作曲线的切线只有一条吗?即方程(*)惟一吗?  相似文献   

6.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

7.
一、利用圆的切线的斜率例1已知实数x、y满足x~2+y~2=1,求y+2/x+1的取值范围.解析单从数的角度研究,似乎很难.转换角度,以数形结合来研究,各式都有具体的形象.如图1,设P(x,y)是圆O:x~2+y~2=1上的点,则y+2/x+1是过P(x,y)、A(-1,-2)两点直线PA的斜图1率k_(PA).过A作圆的切线AB和AC,  相似文献   

8.
曲线y=f(x)在点x0的导数f′(x0)就是曲线在该点的切线的斜率,本文对用导数几何意义求切线引起的误解进行剖析.已知曲线C:y=2x-x3,求过点A(1,1)的切线方程.(2005年全国高考卷Ⅲ文科15题改编)误解:显然点A(1,1)在曲线C:y=2x-x3上,f′(x)=2-3x2∴f′(1)=-1∴过点(1,1)的切线方程为:y-1=-1(x-1),即y=-x 2解析:由于点A(1,1)恰好在曲线y=f(x)上,因此容易得到一条切线方程,即以点A为切点的切线.但本题求的是“经过点A的切线”,而不是“在点A处的切线”,因而不排除有其他切线经过A.因此本题切线应有两条,一条以点A为切点,另一条不以点A为切点但…  相似文献   

9.
求三次函数y=ax~3 bx~3 cx d(a≠0),过点P(x`0,y`0)的切线方程是一种常见题型,先根据导数的几何意义求切线的斜率,然后由点斜式即可得到所求切线方程.这种题型主要分为两种情况:一是点P在原曲线上;二是点P不在原曲线上.一般情况下,已知点P在原曲线上的情况比较简单,但是也很容易出错.本文针对这种情况作了仔细的剖析,并探究出一个结论,与大家分享.  相似文献   

10.
在椭圆中,有一个非常重要的光学性质,即一束光线从一个焦点射出,经椭圆反射后会射向另一个焦点. 定理椭圆上任意一点的切线和该点的法线分别是通过该点的两条焦半径所成内外角的角平分线. 证明 如图,设直线CD与椭圆切于P点,PM为该点的法线.设椭圆的方程为:x/a2+y/b2=1(a>b>0),设P(x0,y0)(y0≠0)为椭圆上任意一点,则椭圆在P点的切线斜率为-b2x0/a2y0,因为法线PM与切线垂直,故其斜率为:k=a2y0/b2x0.  相似文献   

11.
题目(2009年广东卷理)已知曲线C_n:x~2-2nx+y~2=0(n=1,2,3,…),从点P(-1,0)向曲线C_n引斜率为k_n(k_n>0)的切线l_n,切点为P_n(x_n,y_n)(Ⅰ)求数列{x_n},{y_n}的通项公式.(Ⅱ)证明:x_1·x_3·x_5·…·x_(2n-1)<(1-x_n)/(1+x_n)~(1/2)<2~(1/2)sinx_n/y)n.分析:曲线C_n:(x-n)~2+y~2=n~2是以(n,0)为圆心,n为半径的圆,l_n:是过定点P(-1,0)圆C_n的切线,切点为P_n(x_n,y_n).  相似文献   

12.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

13.
1.问题(2014年苏州统测模拟第22题)过x轴上一动点A(a,0)引抛物线y=x2+1的两条切线AP,AQ,P,Q为切点,设切线AP,AQ的斜率分别为k_1和k_2.(Ⅰ)求证:k_1k_2=-4.(Ⅱ)试问:直线PQ是否经过定点?若是,求出该定点坐标;若不是,请说明理由.  相似文献   

14.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

15.
正1试题概况在一次高二的检测考试中,遇到了这样一道压轴题:已知椭圆C:x2/a2+y2/b2=1(ab0),圆O:x2+y2=b2,点A、F分别是椭圆C的左顶点和左焦点,点P是圆O上的动点.(1)若P(-1,3(1/2)),PA是圆O的切线,求椭圆C的方程;(2)若PA PF是常数,求椭圆C的离心率;(3)当b=1时,过原点且斜率为k的直线交椭圆C于D、E两点(其中点D在第一象限内),它在轴上的射影为点  相似文献   

16.
在统编高中第二册P_(150)介绍了求抛物线切线方程的初等方法。书上是这样说的:“设抛物线方程为y~2=2px,p(x_0,y_0)是抛物线上一点,我们来确定斜率k,使过点P的直线PQy—y_0=k(x—x_0)成为抛物线在P点的切线。(注意符号是笔者添的,  相似文献   

17.
已知Q(x0 ,y0 )是椭圆x2a2 y2b2 =1 (a>b>0 )上一点 ,求作过Q点的切线 ,文 [1 ]给出了一种尺规作法 ,若Q在非顶点处 ,文[1 ]作法的实质是 :取点P(x0 ,ay0b) ,作PN⊥OP(O为坐标系原点 ) ,交x轴于N ,则直线NQ为所求的切线 .我们指出 ,当b>a>0时 ,这种作法同样正确 ,过双曲线上一点作双曲线的切线也有类似的作法 .已知双曲线 x2a2 - y2b2 =± 1上一点Q(x0 ,y0 ) ,过Q点的切线方程是x0 xa2 - y0 yb2=± 1 ,当Q不是顶点时 ,该切线的斜率为b2 x0a2 y0.下面给也切线作法 :作法 :( 1 )若Q为双曲线顶点 ,则切线垂直于Q点所在的轴 .( 2 )或Q…  相似文献   

18.
正笔者在利用几何画板研究有心圆锥曲线的切线时发现一个简洁有趣的性质,现介绍如下:命题1自圆C_1:x~2+y~2=a~2+b~2上任一点P向椭圆C_2:x~2/a~2+y~2/b~2=1(a,b0)引两条切线,则这两条切线互相垂直.证明:设P点的坐标为(x_0,y_0),自这一点向椭圆C_2引的两切线分别为l_1和l_2.(1)当切线的斜率存在且不为0时,设过P的切线方程为y-y_0=k(x-x_0),由y-y_0=k(x-x_0),x~2/a~2+y~2/b~2=1得(b~2+k~2a~2)x~2+  相似文献   

19.
<正>1 试题呈现已知抛物线C:y2=4x的焦点为F,直线y=x-2与抛物线C交于A,B两点.(1)求△FAB的面积;(2)过抛物线C上一点P作圆M:(x-3)2+y2=4的两条斜率都存在的切线分别与抛物线C交于异于点P的两点D,E.证明:直线DE与圆M相切.本题是典型的抛物线多动点问题,结合直线与圆的位置关系进行考查,对学生逻辑推理能力和数学运算能力有较高的要求.直线与圆锥曲线综合问题,常规方法是联立直线与曲线方程,  相似文献   

20.
高中数学第三册(选修Ⅱ)第112页例3如图1,已知曲线y=1/3x^3上一点P(2,8/3).求:(1)点P处的切线的斜率;(2)点P处的切线方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号