首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>一、知识梳理1.平面向量的数量积。(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,规定零向量与任一向量的数量积为0,即0·a=0。(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。2.平面向量数量积的运算律。(1)a·b=b·a(交换律)。  相似文献   

2.
平面向量的数量积是一个重点、难点,学生对平面向量的数量积及其性质的应用,感到困难、或无从下手,甚至回避.本文从以下几个方面讲解它的性质及应用. 两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),即a·b=|a||b|cosθ  相似文献   

3.
向量的数量积:设a、b是任意两个非零向量,它们之间正方向的夹角为∠(a,b),(0≤∠(a,b)≤π,则有a·b=|a|· |b|cos∠(a,b).  相似文献   

4.
<正>一般地,根据向量数量积的定义a·b=|a||b|cosθ,为求向量a与b的数量积a·b,往往需明确这两个向量的模及所成的夹角θ.仔细分析有关向量数量积的问题,发现其中有一类向量题,其题设条件不是按三要素|a|、|b|、θ全部给定来设计,而是以向量投影为背景进行设计,即以|a|、|b|cosθ  相似文献   

5.
两个向量夹角的定义:已知非零向量a与b,作^→OA=a,^→OB=b,则∠AOB=θ(0&#176;≤θ≤180&#176;)叫做向量a与b的夹角.两个向量的数量积定义:两个非零向量a与b的夹角为θ,我们把|a|b|cosθ叫做a与b的数量积,记作a&#183;b=|a|b|cosθ.  相似文献   

6.
两个非零向量的数量积的定义式a·b= |a||b|cosθ含有"角"和"长度";而该式又可变形为a·btanθ=|a||b|sinθtanθ,此式与三角形正弦面积有关;数量积还有坐标形式a·b =x1x2 y1y2.因此,通过数量积可沟通长度、角、坐标及三角形面积之间的关系.利用数量积解题,可以避繁就简.以下列举其在圆锥曲线中的应用.  相似文献   

7.
正1数量积的第二定义及推论1.1平面向量数量积的第二定义:我们知道现行普通高中课程标准实验教科书《数学》(必修4)上,对平面向量数量积(内积)是这样定义的:对于非零向量a,b,θ为向量a,b的夹角,则a·b=|a||b|cosθ,规定零向量与任一向量的数量积等于零.另外我们  相似文献   

8.
1平面向量数量积的定义及其几何意义①定义:已知2个非零向量a和b,它们的夹角为θ,则把数量|a|.|b|cosθ叫做a与b的数量积(内积).记作a.b,即a.b=|a|.|b|cosθ.  相似文献   

9.
<正>向量的数量积有两个简单而又有趣的性质,利用它们可以轻松地解决某些问题,下面就此作一些介绍.性质1(数量积不等式)|a·b|≤|a||b|.证明设向量a,b的夹角为θ,则|a·b|=|a||b||cosθ|≤|a||b|.由于0°≤θ≤180°,故当且仅当θ=0或θ=180时,取"=".当θ=0°时,a·b=|a  相似文献   

10.
向量a与b之间的夹角定义为分别等于a和b并且具有公共始点的两个向量之间的夹角(Fig.1).向量a乘以向量b的数量积定义为ab,它等于这两个向量的绝对值与它们夹角的余弦的乘积,即ab=|a||b|cosθ.数量积具有如下可由定义直接推出的性质:(1)ab=ba;(2)a~2=aa=|a|~2;(3)(λa)b=λ(ab);  相似文献   

11.
平面向量的数量积是高中数学的重点内容,而2个向量的“夹角”又是数量积中的一个重要概念,因此充分理解“夹角”的含义是解决有关数量积问题的关键.两个向量的“夹角”定义如下:已知两个非零向量a与b,过O点作向量OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a,b的夹角.当且仅  相似文献   

12.
平面向量作为高中数学的三大工具之一,用它来解几何题有着其独特的先进性和优越性.本文将通过实例来说明如何利用向量数量积的几何意义来解答有关问题. 1 1.数量积的几何意义 人教A版必修四第105页指出: 两个向量数量积→a·→b的几何意义是→a在→b方向上的投影|→a|cosθ与|→b|的积,其中θ为向量→a与→b的夹角.  相似文献   

13.
平面向量是高中数学的基本知识之一,而平面向量的数量积及平面向量的应用,则是其重点内容,下面我们重点讲解这部分知识,力求在该处有所突破,从而轻松拿下平面向量的数量积及平面向量的应用的有关问题.重点难点1.向量的夹角:已知两个非零向量a与b,作(?)=a,(?)=b,则∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角,记作〈a,b〉.  相似文献   

14.
余锦银 《中学教研》2007,(10):30-31
在新教材向量部分的知识中,有一些向量不等式,例如:设 a,b 为两个非零向量,则有三角不等式:|a|-|b|≤|a±b|≤|a| |b|;数量积不等式:a·b≤|a·b|≤|a|·|b|和 |a|~2≥(a·b)~2/(|b|~2),当且仅当 a 与 b 共线(同向或反向)时,等号成立。我们可以借助这些向量不等式来解决一些具有相似结构特征的代数不等式问题,其中数量积的定义及其坐  相似文献   

15.
一、数量积的第二定义及推论1.平面向量数量积的第二定义我们知道现行普通高中课程标准实验教科书《数学》(必修4)上,对平面向量数量积(内积)是这样定义的:对于非零向量a,b,θ为向量a,b的夹角,则a·b=|a||b|cosθ,规定零向量与任一向量的数量积等于零.另外我们在初中学习多项式乘法时,有如下结论:ab=14[(a+b)2-(a-b)2],通过类比和证明。  相似文献   

16.
向量的数量积公式a·b=|a|·|b|cpsθ,其结构简单,内涵丰富,运用它解决有关向量的夹角的大小、参数的取值、函数的最值、轨迹方程等问题,显得简洁明快,颇具特色.举数例,供同学们参考.  相似文献   

17.
新教材中新增了向量的内容,其中两个向量的数量积有一个性质:a·b=|a|·|b|cosθ(其中θ为向量a与b的夹角),则|a·b|=||a|·|b|cosθ|,又-1≤cosθ≤1,则易得到以下推论:(1)a·b≤|a|·|b|;(2)|a·b|≤|a|·|b|;(3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|;⑷当a与b共线时,|a·b|=|a|·|b|.下面例析以上推论在解不等式问题中的应用.一、证明不等式例1已知a、b∈R ,a b=1,求证:2a 1 2b 1≤22.证明:设m=(1,1),n=(2a 1,2b 1),则m·n=2a 1 2b 1,|m|=2,|n|=2a 1 2b 1=2.由性质m·n≤|m|·|n|,得2a 1 2b 1≤22.例2已知x y z=1,求…  相似文献   

18.
向量作为一个基本工具,在数学解题中有着极其重要的地位与作用,其中向量的数量积是向量中的重中之重,但教材中对于数量积的几何意义只给出了定义:数量积a·b等于a的长度|a|与b在a方向上的投影|b |cosθ的乘积.  相似文献   

19.
用向量的数量积公式 a·b=|a||b|cosθ(θ为向量 a 与 b 的夹角)推导正弦定理、余弦定理及射影定理时,简洁、明快.如图所示AB=AC+CB,设x轴、y 轴方向上的单位向量分别为 i、j,将上式两边分别与 i、j  相似文献   

20.
<正>我们知道,两个向量a,b的数量积a·b=|a||b|cosθ,对于一类利用已知向量a,b表示的向量c=xa+yb,可以分别让c与a,b作数量积运算,从而建立x,y之间的等量关系.利用这一方法,能够简单地解决一类高考向量问题.下面举例说明.例1给定两个长度为1的平面向量  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号