首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
运动中自由基生成: 线粒体的作用   总被引:6,自引:0,他引:6  
正常细胞的一生中可以产生活性氧基团(ROS)。生理状态下,线粒体呼吸链是ROS主要来源,其中不多于线粒体总氧耗的5%用于产生ROS。研究已经表明,在剧烈有氧运动时骨骼肌ROS生成增多,但是线粒性体在ROS生成增多中的量化作用仍不十分清楚。大强度运动可引起线粒体出现各种形式的氧化损伤,如脂质过氧化、蛋白质氧化、氧化还原状态紊乱及酶的失活等。这些生物化学的修饰作用将导致以呼吸链缺损和解偶联为标志的线粒  相似文献   

2.
线粒体呼吸链是运动产生自由基和ROS的主要场所,并构成机体主要的氧化系统。ROS的过量产生会对机体造成氧化损伤。呼吸链中存在对抗ROS的CoQ和细胞色素C等抗氧化体系,但作用有限。各种外源性抗氧化营养素的补充能起到对抗ROS的作用,联合补充的效果可能更佳。  相似文献   

3.
采用文献资料法对补充外源性抗氧化剂对运动诱导的适应性变化的影响进行探讨。研究发现为了抵抗自由基的消极作用,运动爱好者常摄取外源性抗氧化剂来消除运动时产生的自由基。抗氧化剂的补充对运动带来的适应性变化有抑制作用,这可能是由于内源性细胞氧化还原状态的调节依赖于机体中复杂的自由基产生和消除系统,这些系统可以精确地调节特定的自由基。而常用的抗氧化剂不具备特异性消除自由基的能力,反而破坏了机体这些系统的调节能力,不仅消除了有害的活性氧/活性氮(ROS/RNS),还影响了细胞适应所需的相关信号。但以往研究在探讨运动或抗氧化剂对于机体氧化还原状态的影响时,没有将氧化还原状态的个体差异考虑在内。ROS/RNS浓度对运动训练适应性和运动表现具有非线性作用,运动时产生适量ROS/RNS有利于机体对运动产生良好的适应性变化,当运动时产生的ROS/RNS未达到对机体有害的浓度范围时,外源性抗氧化剂的补充可能会影响细胞适应所需的ROS / RNS相关信号,抑制机体对运动产生适应性变化。  相似文献   

4.
线粒体生物合成依赖于细胞核与线粒体基因的协同表达.哺乳动物衰老过程中骨骼肌线粒体氧化磷酸化能力下降,其中线粒体数量和,或线粒体功能的缺失是其重要影响因素之一.运动可以诱导骨骼肌线粒体生物合成产生适应性变化,线粒体呼吸链产生的活性氧和自由基参与了?怂 线粒体到细胞核的信号传导.综述当前有关运动与线粒体生物合成的分子机理、运动对衰老状态下骨骼肌线粒体生物合成的影响以及在此过程中涉及的信号通路.  相似文献   

5.
有氧代谢不可避免地产生活性氧(reactive oxygen species,ROS).尽管过多的ROS具有毒性作用,但一定的ROS却在细胞信号转导和抗氧化酶基因表达上起着重要的作用.运动训练能建立和维持氧化-抗氧化内稳态(oxidant-antioxidant homeostasis,OAH).OAH可以将ROS维持在一定的水平.OAH可以抵抗的ROS涨落有一定的范围(OAH-specific ROS level zone,oROZ),其最大值和最小值分别记为maxROZ和minROZ.将刚能引起氧化应激的ROS称为应激ROS水平(stressful ROS level,sROS).如果ROS水平经常低于minROZ,OAH就会退化.当ROS水平超过maxROZ达到sROS时,就可以打破现有OAH,建立抗氧化能力更强的新OAH.如果ROS水平引起细胞凋亡或损伤,补充外源性抗氧化剂是有益的.如果将ROS水平降低到minROZ之下,就会影响OAH的维持,外源性抗氧化剂的补充是有害的.如果将sROS降低到oROZ之中,就会影响新的OAH的建立,外源性抗氧化剂的补充是无益的.  相似文献   

6.
运动是一个非常重要的刺激因素,可对骨骼肌中的多种代谢和转录过程起调节作用.目前,大多数学者研究认为运动时机体产生的活性氧(ROS)对机体有很大的影响.ROS作为信号分子,通过激活丝裂素活化蛋白激酶(mi-togen aetivated protein kinases,MAPK),将胞外刺激信号转导至胞核介导细胞产生反应,调节抗氧化酶基因的表达等,其在氧化应激适应中的作用及机制成为关注的焦点.笔者就运动、氧化应激与MAPK系统的相关文献进行综述.  相似文献   

7.
建立大鼠有氧运动模型,原代培养了有氧运动后大鼠神经胶质细胞,阐明有氧运动后类NADPH氧化酶介导产生的活性氧(ROS)对细胞正常生理功能的影响。通过实验发现,有氧运动后大鼠神经胶质细胞中O2.-和H2O2生成均明显增加,而人工饲喂NADPH氧化酶的抑制剂二联苯碘(diphenylene iodonium,DPI)或夹竹桃麻素(apocynin,APO)后,均明显地降低由运动引起的大鼠神经胶质细胞O2.-和H2O2生成量;细胞活性的测定显示,DPI、APO、超氧化物歧化酶 过氧化氢酶均能明显降低运动后大鼠神经胶质细胞活性。表明有氧运动中类NADPH氧化酶介导产生的ROS是大鼠神经胶质细胞生存所必需,过度进补抗氧化剂将干扰细胞的正常生理活动甚至导致细胞死亡。  相似文献   

8.
李海 《体育世界》2011,(6):28-29
目的:通过9周跑台训练建立过度训练大鼠模型,拟观察过度训练大鼠骨骼肌线粒体XOD、ATPase活性变化。结论:过度训练后大鼠骨骼肌线粒体XOD活性升高,ATPase活性降低;提示大鼠骨骼肌细胞在黄嘌呤氧化酶途径和线粒体呼吸链途径出现了能量代谢障碍。  相似文献   

9.
采用文献综述法,分析NADPH氧化酶与心血管疾病病理之关系,及运动激活NADPH氧化酶介导产生的ROS在信息传递、基因转录、细胞生长、凋亡以及调节内皮依赖性一氧化氮合酶脱偶联等血管舒张中的作用相关研究成果.提示:NADPH氧化酶介导产生的ROS是诱发心血管疾病的潜在因子,诱导参与心血管疾病的发生、发展的病理过程.适度运动可适度激活NADPH氧化酶产生的ROS,可作为预防治疗心血管疾病的有效手段.  相似文献   

10.
运动性内源自由基的产生及其介导基因表达的作用   总被引:1,自引:0,他引:1  
从线粒体电子漏、黄嘌呤氧化酶 -缺血再灌、自氧化、细胞氧化还原状态紊乱和胞浆钙离子五个方面的机制阐述运动性内源自由基的产生 ,以及运动产生的自由基介导基因表达的作用 ,为运动与自由基理论的深入研究提供依据。  相似文献   

11.
自19世纪50年代被发现以来,有关线粒体的研究从未停歇.作为一种存在于大多数真核细胞中的双层膜细胞器,线粒体负责提供机体活动所需要的大部分ATP,同时参与多种细胞生理活动,为适应细胞不同条件下的需求,线粒体数目处于动态变化之中,同时线粒体也可以通过融合和分裂来实现形态和功能上的改变.运动作为一种有益健康的生活方式,其关键作用是能够激活肌肉细胞内过氧化物酶体增殖物激活受体γ辅助活化因子1α(PGC-1α),从而诱导下游多种转录因子的表达,促进线粒体蛋白合成的增加,最终合成更多功能完善的线粒体,有效改善机体能量代谢.该综述将着重介绍线粒体营养素羟基酪醇、白藜芦醇及硫辛酸在运动状态下对线粒体代谢包括线粒体生成、线粒体融合和分裂的调控作用以及其潜在作用机制的研究进展.  相似文献   

12.
神经退行性疾病是一种以中枢神经系统或外周神经系统神经元结构和功能丧失为特征的神经系统疾病。线粒体功能障碍是阿尔茨海默病、帕金森病、亨廷顿病等多种常见神经退行性疾病的早期病理特征。大量研究表明运动可明显改善神经退行性病变症状,然而其调节机制目前还不清楚。鉴于运动是促进线粒体合成、活性与功能的重要调节因素,并且线粒体功能变化在神经退行性病变中发挥重要作用。主要从线粒体角度阐述运动对神经退行性疾病的影响及可能机制,包括线粒体生物合成、线粒体ROS和氧化应激、线粒体动力学、线粒体质量控制,为运动防治神经退行性疾病提供理论支持。  相似文献   

13.
长期的耐力训练或运动不仅能够提高运动能力,还能促进身体健康,减少慢性疾病的发病几率,但具体机制还不清楚.骨骼肌对耐力运动的健康适应表现为增加肌糖原含量和胰岛素敏感性、氧化型肌纤维的转化以及提高线粒体的数量与功能.线粒体的形态结构、数量和质量,具有高度的可塑性,各种生理应激都能充分的调节线粒体的可塑性.运动训练不仅刺激肌细胞线粒体的生物合成,还通过线粒体分裂和融合对线粒体网状结构进行重塑,并且通过线粒体质量控制清除旧的、受损的或功能失调的线粒体.研究线粒体可塑性与运动适应动态变化中的作用,从线粒体形态、结构和动力重构角度出发,了解线粒体和能量代谢的关系,为代谢疾病、退行性疾病寻找明确的靶标提供一定的理论基础.  相似文献   

14.
In the past, contraction-induced production of reactive oxygen species (ROS) has been implicated in oxidative stress to skeletal muscle. As research advances, clear evidence has revealed a more complete role of ROS under both physiologic and pathologic conditions. Central to the role of ROS is the redox signaling pathways that control exercise-induced major physiologic and cellular responses and adaptations, such as mitochondrial biogenesis, mitophagy, mitochondrial morphologic dynamics, antioxidant defense, and inflammation. The current review focuses on how muscle contraction and immobilization may activate or inhibit redox signalings and their impact on muscle mitochondrial homeostasis and physiologic implications.  相似文献   

15.
张庆 《体育科研》2020,(4):52-59
线粒体生物发生、线粒体融合-分裂和线粒体自噬之间的平衡对线粒体质量控制、维持细胞功能和骨骼肌能量稳态至关重要。骨骼肌线粒体功能障碍与许多疾病的发生密切相关,包括与衰老相关的肌肉减少症、肌萎缩、肌营养不良和II型糖尿病等。本文聚焦骨骼肌线粒体生物发生和功能的精细调节网络,综述了运动对骨骼肌线粒体质量控制的调节作用,为未来相关领域的研究提供理论基础并作出展望。  相似文献   

16.
The first report demonstrating that prolonged endurance exercise promotes oxidative stress in humans was published more than 4 decades ago. Since this discovery, many ensuing investigations have corroborated the fact that muscular exercise increases the production of reactive oxygen species (ROS) and results in oxidative stress in numerous tissues including blood and skeletal muscles. Although several tissues may contribute to exercise-induced ROS production, it is predicted that muscular contractions stimulate ROS production in active muscle fibers and that skeletal muscle is a primary source of ROS production during exercise. This contraction-induced ROS generation is associated with (1) oxidant damage in several tissues (e.g., increased protein oxidation and lipid peroxidation), (2) accelerated muscle fatigue, and (3) activation of biochemical signaling pathways that contribute to exercise-induced adaptation in the contracting muscle fibers. While our understanding of exercise and oxidative stress has advanced rapidly during the last decades, questions remain about whether exercise-induced increases in ROS production are beneficial or harmful to health. This review addresses this issue by discussing the site(s) of oxidant production during exercise and detailing the health consequences of exercise-induced ROS production.  相似文献   

17.
田野  何其华 《体育科学》1993,13(4):68-72
结果提示:急性运动过程中线粒体离子代谢紊乱抑制线粒体氧化磷酸化过程,减少 ATP 生成,进而造成线粒体肿胀、嵴破坏,进一步抑制氧化磷酸化,加剧离子代谢紊乱的“恶性循环”可能是运动性骨骼肌疲劳的重要原因。耐力训练通过提高线粒体的代谢机能,改善运动中线粒体离子代谢,以维持其正常形态可能是耐力训练增强机体抗疲劳能力,提高运动机能的重要机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号