首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

2.
构造法是一种创造性的数学方法 ,它通过在条件和结论之间建立中转站 ,使条件迅速向结论转化 ,不但可以培养人的创造性思维 ,而且更能让人领悟到数学的无穷乐趣和魅力 .这里略举几例 :例 1 已知a ,b ,c∈R ,a +b+c =m ,a2 +b2 +c2 =m22 (m >0 ) ,求证 :0 ≤a≤2m3 .分析 此题关键在于利用已知条件 ,建立a的不等式 ,解得a的最大值 .这里可以消去c得到b的一元二次方程 ,再利用b∈R和Δ≥ 0 ,可以得到a的不等式 ,从而得证 .若构造关于b、c的二次函数 ,则更妙 .解 令f(x) =(x-b) 2 +(x-c) 2 ,则f(x) =2x2 -2…  相似文献   

3.
欢迎您—2003     
一年一度的佳节———元旦 ,就要来临了 ,为了欢度节日 ,特为数学爱好者 ,提供一组结果均为 2 0 0 3的函数趣题以资助乐 .1 设对于函数 :f(x) =x +3x - 2 ,g(x) =ax +bx +c ,且有 f[g(x) ] =2 0 0 6x +42 0 0 1x - 1,试求a、b、c之值 .解 由题目条件得 :f[g(x) ] =g(x) +3g(x) - 2=ax +bx +c +3ax +bx +c - 2=(a +3)x +(b +3c)(a - 2 )x +(b - 2c) .由题设知(a +3)x +(b +3c)(a - 2 )x +(b - 2c) =2 0 0 6x +42 0 0 1x - 1,整理得 :( 5a - 10 0 15)x2 +( 5a +5b - 10 0 15c- …  相似文献   

4.
擂台题 (5 4 ) :证明或否定若a、b、c为△ABC的三边长 ,实数λ≥ 2 ,则(b+c-a) λbλ+cλ +(c+a -b) λcλ+aλ +(a +b -c) λaλ+bλ ≥ 32①引理 若m、n∈R+ ,实数 p≥ 1 ,则(m +n2 ) p≤ mp+np2 ②证明  (1 )当 p =1时 ,②式等号成立 ,(2 )当 p >1时 ,令 f(x) =xp(x >0 ) ,这时 ,f′(x) =pxp- 1,f″(x) =p(p -1 )xp - 2 >0 ,所以 f(x)是 (0 ,+∞ )上的凹函数。因为m、n∈R+ ,由琴生不等式知f(m +n2 )≤ f(m) +f(n)2 ,即有 (m +n2 ) p≤ mp+np2 ,当且仅当m =n…  相似文献   

5.
定理 二次函数 y =ax2 bx c的值域是[0 , ∞ )的充要条件是a>0且b2 - 4ac=0 .证明 因为 y =ax2 bx c =a(x b2a) 2 4ac-b24a ,x∈R ,所以二次函数y=ax2 bx c的值域是 [0 , ∞ ) y的最小值是 0 ,无最大值 a>0且b2 - 4ac=0 .下面举例说明定理的应用 .例 1 已知 f(x) =2x2 bx cx2 1(b <0 )的值域为[1,3] ,求实数b,c的值 .解 f(x)的定义域为R .由 1≤2x2 bx cx2 1≤ 3,得x2 bx c- 1≥0且x2 -bx 3-c≥ 0 .所以 f(x)的值域为 [1,3] y1=x2 bx c- 1和 …  相似文献   

6.
众所周知 ,若a≥b且a≤b ,则a=b .利用这一结论常能解决一些数学问题 .下面是一道 2 0 0 2年全国联赛试题 :已知 f(x)是定义在R上的函数 ,f( 1 ) =1 ,且对任意x∈R都有f(x+ 5 )≥ f(x) + 5 ,f(x+ 1 )≤ f(x) + 1 .若 g(x) =f(x) + 1 -x ,则g( 2 0 0 2 ) =.解 由 g(x) =f(x) + 1 -x ,得g(x+ 5 ) =f(x + 5 ) + 1 -x-5=f(x + 5 ) -x-4≥ f(x) + 5 -x -4=f(x) + 1 -x =g(x) ,g(x + 1 ) =f(x+ 1 ) + 1 -x -1=f(x+ 1 ) -x≤f(x) + 1 -x =g(x) .∴g(x) ≤g(x+ 5 )≤ g(x + 4)…  相似文献   

7.
根据欲证不等式的某些特点 ,引入适当的函数、数列、方程、图形等 .并利用它们的性质证明不等式的方法 ,称为构造法 .以下分别说明几种常见的构造对象 .一、二次函数对二次函数 f(x) =ax2 +bx+c(α≤x≤ β) ,若a >0 ,则 f(x) ≥ 0 Δ≤ 0 ;-b2a∈(α ,β)时max{ f(α) ,f( β) }≥ f(x) ≥f -b2a ;-b2a (α ,β)时 ,f(x)在 f(α)与f( β)之间 .利用f(x) ≥ 0 Δ ≤ 0证明不等式的方法也称为判别式法 .它的用法是 :当欲证之不等式呈现B2 ≤ ( ≥ )AC这样的与判别式类似的形式时 ,可考虑构造二次函数 ;…  相似文献   

8.
20 0 2年高考有一道数学题为 :已知a >0 ,函数 f(x) =ax -bx2 .(1)当b >0时 ,若对任意x∈R ,都有f(x) ≤ 1,证明 :a≤ 2b ;(2 )当b >1时 ,证明 :对任意x∈ [0 ,1],|f(x)|≤ 1的充要条件是b- 1≤a≤ 2 b ;(3)当 0 <b≤ 1时 ,讨论 :对任意x∈[0 ,1],|f(x)|≤ 1的充要条件 .绝大多数考生做此题时无所适从 ,根本不知从何下手 ,参考答案给出的方法比较抽象 ,难于理解 ,笔者有一解法 ,介绍如下 :解  (1)由已知ax -bx2 ≤ 1,∴ bx2 -ax +1≥ 0 .∵ x∈R ,b >0 ,∴ Δ =a2 - 4b≤ 0 ,∴ a≤ 2 b .…  相似文献   

9.
选择题1 下列各式 :( 1) 2 0 0 1 {x|x≤ 2 0 0 3};( 2 ) 2 0 0 3∈ {x|x <2 0 0 3};( 3) {2 0 0 3} {x|x≤ 20 0 3};( 4)Φ∈ {x|x <2 0 0 3},其中正确式子的个数为 (   )A 1  B 2  C 3  D 42 满足f(π +x) =- f(x) ,f( -x) =f(x)的函数 f(x)可能是 (   )A sinx B sin x2  C cos2x D cosx3 若函数 f(x) =ax(a >0 ,a≠ 1)为减函数 ,那么 g(x) =log1a1x - 1的图象是 (   )A       BC       D4 如果a·b =a·c且a≠ 0 ,那么 (   )A b =…  相似文献   

10.
最值问题是中学数学中一个重要内容 ,其涉及面广 ,难度较大 ,求解方法灵活多样 .本文通过构造函数和曲线来解决某些最值问题 ,不仅形象直观、易于掌握 ,而且可以减少许多不必要的计算 ,达到化难为易的目的 .一、构造函数求最值1 .构造二次函数例 1 设a b c d e =8,a2 b2 c2 d2 e2 =1 6,求e的最大值 .解 :设f(x) =(x a) 2 (x b) 2 (x c) 2 (x d) 2=4x2 2 (a b c d)x a2 b2 c2 d2显然f(x) ≥ 0 ,且x2 的系数为正 ,则△ =b2 -4ac≤ 0 ,即4(a b c d) 2 -1 6(a2 b2 c2 d2 )=4( 8…  相似文献   

11.
本文用初等方法导出函数 f(x) =ax b cx d(a >0 ,c<0 )的几个优美性质。1 f(x)不是单调函数显然 ,函数的定义域为 [-ba ,-dc]。任给x1、x2 ∈ [-ba ,-dc],且x1<x2 ,则f(x1) -f(x2 ) =(ax1 b cx1 d) -(ax2 b cx2 d)=(ax1 b  相似文献   

12.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

13.
问题 :对于函数 f(x) ,若存在x0 ∈R ,使f(x0 ) =x0 成立 ,则称x0 为 f(x)的不动点 .如果函数 f(x) =x2 +abx-c(b,c∈N)有且只有两个不动点 0 ,2 ,且f( -2 ) <-12 .( 1 )求函数 f(x)的解析式 ;( 2 )已知各项不为零的数列 {an}满足4Sn·f 1an =1 ,其中Sn 是数列 {an}的前n项和 ,求数列通项an.( 3 )如果数列 {an}满足a1 =4,an+1 =f(an) ,求证 :当n≥ 2时 ,恒有an <3成立 .一、分析与评述( 1 )分析 :由f( 0 ) =0 ,可得a=0 ,①又由 f( 2 ) =2可得 ,2b =c+2 ,②再由 f( -2 ) <-12 可得 ,2…  相似文献   

14.
1 求证 :sin2 0 0 3° >12 ·cos2 0 0 2°。  (不要使用计算器等工具。)2 试求出两条抛物线 y2 =2 5 -6x与x2 =2 5 -8y的所有的交点的坐标。 (不要使用一元四次方程求根公式。)3 试求出所有的有序正整数对 (a ,b) (a≤b) ,使得a能整除b2 +b +1 ,且b能整除a2 +a +1。4 试求出所有的函数 f :R -{0 ,1 }→R -{0 },使得对于任何的满足“x·f(y) ,y -x∈R -{0 ,1 }”的x∈R -{0 },y∈R -{0 ,1 },都有  f(x·f(y) ) =(1 -y)·f(y -x)。5 试求出所有的函数 f :R→R ,使得对于任何的x、y∈…  相似文献   

15.
欢庆2003     
1 .已知x2 0 0 2 x2 0 0 1 … 1 =0 ,求x2 0 0 3 1x2 0 0 3 的值 .解 :由x2 0 0 3 =x2 0 0 3 0 =x2 0 0 3 x2 0 0 2 x2 0 0 1 … 1 =x(x2 0 0 2 x2 0 0 1 … 1 ) 1 =x·0 1 =1得 1x2 0 0 3 =1 ,故原式 =1 1 =2 .2 .已知a、b、c、d满足a b=c d ,a3 b3 =c3 d3 ,求证 :a2 0 0 3 b2 0 0 3 =c2 0 0 3 d2 0 0 3 .证明 :因为a3 b3 =c3 d3 所以 (a b) (a2 -ab b2 ) =(c d) (c2 -cd d2 )因为a b=c d ,故若a b=c d =0 ,则a=-b,c=-d ,从而a2 0 0 3 b2 0 0 3 =(-…  相似文献   

16.
在函数的性质中 ,周期性占有特殊地位 .本文给出几个在对称条件下函数周期性的一些判定方法及其应用例举 .结论 1 如果一个函数的图象有两条对称轴x=a与x =b,那么这个函数一定是周期函数 .具体地说 ,若函数 y=f(x) ,对于定义域R上的任何x ,都有 f(x) =f( 2a-x) ,f(x) =f( 2b -x) (a≠b) ,则函数 f(x)是周期函数 ,且 2|a-b|为其一个正周期 .证明 对于任一x∈R ,都有f[2 (b-a) +x]=f( 2b-2a +x)=f( 2a-x) =f(x) ,∴y=f(x)是一个周期函数 ,2|a-b|为其一个正周期 .根据结论 1 ,若函数 f(x…  相似文献   

17.
大家知道 ,一元二次方程ax2 +bx +c=0 (a≠ 0 )根的判别式Δ =b2 - 4ac有着广泛的应用 .下面就用Δ≤ 0求某些函数最值谈谈它的应用 .例 1 若x、y、z为正实数 ,且x + 3y + 5z =15,求 x + 5y+ 2z的最大值 .解 :设函数f (m ) =(x + 3y + 5z)m2 + 2 (x + 5y + 2z)m +1+ 532 + 252 =( xm + 1) 2 + 3ym + 532 + 5zm + 252≥ 0 ,x + 3y + 5z=15>0 ,所以Δ =4 (x + 5y+ 2z) 2 - 4(x + 3y + 5z) 1+ 53+ 25≤ 0 .即x +5y+ 2z≤ 4 6 .易得等号可以成立 ,故所求式的最大值为 4 6 .例 2 设θ为锐角 ,求…  相似文献   

18.
若x2a2 +y2b2 =1,则有不等式a2 +b2 ≥ (x±y) 2 .这个不等式很容易证明 :a2 +b2 =(a2 +b2 ) x2a2 +y2b2=x2 +y2 +b2 x2a2 +a2 y2b2≥x2 +y2 +2xy=(x +y) 2 ,用 -y代y ,得a2 +b2 ≥ (x -y) 2 .由于条件是椭圆的方程 ,所以我们称上面的不等式为椭圆不等式 .这个不等式的应用很广泛 ,特别是用来求“希望杯”数学竞赛中二元函数的最值或值域问题时显得更加简便 .一、求二元函数的最值例 1 已知a ,b∈R且a +b+1=0 ,求(a -2 ) 2 +(b-3 ) 2 的最小值 .解 设 (a-2 ) 2 +(b -3 ) 2 =t,则(a-2 ) 2…  相似文献   

19.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

20.
有的文献证明了对任何x∈R,f(x)>0.本文获得定理 设x∈R,则f(x)=x4 x2 x 1在x=x0=-14 3-564 56144 3-564-56144=-060582958…处,取得最小值f(x0)=516[(x0 1)2 2]=067355322…此定理可用微分法证明,同时得知x0是方程f’(x)=0的惟一实根.下面用不等式(A2 B2)(1 a2)≥(A aB)2(=|aA=B)来证明.对f(x)进行”双配方”,应用该不等式,有f(x)=(x2 12x)2 34(x 23)2 23=(x2 12x)2 (32x 33)2 23≥11 a2[x2 (12 32a)x 33a]2 23.设3a=b,13<b<3,则x2 (12 b2)x b3≥14[4b3-(12 b2)2]=(3b-1)(3-b)48>0…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号