首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
§8.增根与遗根的问题 1.我们应该先复习一下代数里学过的方程变形的四条定理: (1)如F(x)是整式,则方程f_1(x)=f_2(x)与方程f_1(x) F(x)=f_2(x) F(x)是同解方程。 (2)如m是不等于0的数,则方程f_1(x)=f_x(x)与方程m·f_1(x)=m·f_2(x)是同解方程。 (3)如F(x)是整式,则方程F(x)·f_1(x)=F(x)·f_2(x)是方程f_1(x)=f_2(x)的结果。 (4)方程f_1~2(x)=f_2~2(x)是方程f_1(x)=f_2(x)的结果。 2.在方程变形时用方程与方程的结果互相替代所产生的增根或遗根。 (1)方程两边同乘以一个含有未知数的整式时,可能产生增根,因为这里是把一个方程的结果去替代原方程。  相似文献   

2.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

3.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

4.
国际数学大师陈省身称“方程是好的数学”,这充分说明方程在数学中的作用和地位.解方程的本质是揭示根与系数的关系.本文介绍一元二次方程根的常见、基本变换,看一看当方程的根作某种变换时,方程的系数会有怎样的相应变化.一、倍根变换例1以方程x2-2x-5=0的两根的10倍为两根,请写出新方程.解1设原方程的两根为x1,x2,则x1+x2=2,x1·x2=-5.记新方程两根为y1,y2,而y1=10x1,y2=10x2,所以y1+y2=10(x1+x2)=20,y1·y2=100(x1x2)=-500.因此,所求新方程为y2-20y-500=0.解2由y=10x,得x=1y0,以此代入原方程得(y10)2-2(y10)-5=0,即y2-20y-500=0.显然,解2…  相似文献   

5.
首先让我们来看一道例题:例:解分式方程2x 1 x-31=x26-1①.解:方程两边都乘以(x 1)(x-1),得2(x-1) 3(x 1)=6.解这个整式方程,得x=1.检验:当x=1时,(x 1)(x-1)=0,∴x=1是增根,故原分式方程无解.从解方程的过程可以看到:为解分式方程,需要在①的两边都乘以最简公分母(x 1)(x-1),达  相似文献   

6.
全日制普通高级中学教科书(必修)《数学》第二册(上) P_(88)B 组4,即题目两条曲线 f_1(x,y)=0和 f_2(x,y)=0,它们的交点是 P(x_0,y_0),求证:方程f_1(x,y) λf_2(x,y)=0①的曲线也经过点 P(λ是任意实数).题目结论的证明很容易,此略.题目中,把条件放宽为二曲线 f_1(x,y)=0和 f_2(x,y)=0可以无交点,即方程组(?)②无实数解.  相似文献   

7.
六年制重点中学高中数学课本《解析几何》中有不少习题,若应用下述结论将使解法大大简化。定理设两条曲线的方程是f_1(x,y)=0与f_2(x,y)=0,P(x_o,y_o)是它们的交点。则方程为f_1(x,y) λf_2(x,y)=0(λ是任意常数)的曲线也经过点P(x_o,y_o). 证明因为P(x_0,y_0)是f_1(x,y)=0  相似文献   

8.
本文证明了命题:若圆锥曲线f_1(x,y)=0和f_2(x,y)=0的二次项系数相应相等且相交,则经过交点弦所在直线方程为f_1(x,y)-f_2(x,y)=0。从而推出命题:圆锥曲线f(x,y)=0被点M(m,n)所平分弦所在直线方程为f(x,y)-f(2m-x,2n-y)=0。并举例说明其应用。  相似文献   

9.
<正> 考虑方程F(x)+εφ(x)=0 (1)若当ε=0时方程F(x)=0的根容易求得。并且当方程(1)在ε≠0时的根存在,那么这个根就是ε的函数,令x=f(ε)。若该函数在ε=0处解折,则可展成泰勒级数。  相似文献   

10.
在一元二次方程ax2+bx+c=0(a≠0)中,设x1,x2是它的两个根,则它的根与系数满足:x1+x2=-ba,x1·x2=ca.这两个表达式看起来简单,巧妙地利用它们,可以解答不少的数学竞赛题.一、求值例1设2x2-2x+k=0,2y2-2y+k=0,且x-y=2,那么k=.(2000年河南省初三数学竞赛题)解:由题意知x,y是方程2t2-2t+k=0的根.由根与系数的关系和已知得x+y=1,xy=k2,x-y=2 ∴k=-32.例2若关于x的方程(x+a)(x+b)=M的两根是α、β,则关于x的方程(x+α)(x+β)=-M的两根的平方和为.(2002年河南省初三数学竞赛试题)解:方程(x+a)(x+b)=M可化为x2+(a+b)x+ab-M=0.由根与系数的关…  相似文献   

11.
把圆C1:x2 y2 D1x E1y F1=0(其中D12 E12-4F1>0)和圆C2:x2 y2 D2x E2y F2=0(其中D22 E22-4F2>0)的方程相减,便得到2圆的根轴l的方程为(D1-D2)x (E1-E2)y (F1-F2)=0·①人们已经证明:(1)到圆C1和圆C2的切线长相等的动点都在其根轴l上;(2)当2圆C1和C2相交时,根轴l就是2圆C1和C2的  相似文献   

12.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

13.
众所周知,如果两条曲线的方程是:f_1(x,y)=0和f_2(X,y)= 0,它们的交点是P(x_0,y_0),则方程f_1(x,y)+ λf_2(x,y)=0曲线是经过定点P的曲线系方程。利用或构造这个方程进行解题,可使某些问题的求  相似文献   

14.
对统编教材高中《数学》第一册“简单的三角方程”这一单元的教学,可根据学生的学习基础与程度,适当讨论增根与失根的问题,从某种意义上讲,这是有必要的.在解三角方程时常需要对原方程变形,与解某些代数方程一样,在方程变形过程中.往往会扩大或缩小未知数的允许值范围,破坏方程的同解性.因此解三角方程就有可能产生增根或失根.  相似文献   

15.
一、忽略了对根的检验例1解方程:6/(x~2-1)-3/(x-1)=2/(x 1).错解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.所以原方程的根是x=1.剖析:分式方程是通过转化为整式方程来求解的,解题过程中有可能产生增根,所以求出的根必须检验.正解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.  相似文献   

16.
金良 《中学教研》2002,(8):21-22
高中数学新教材(试验本)第二册(上)的第108页有一道习题: 两条曲线的方程是f(x,y)=0和f_2(x,y)=0,它们的交点是P(x_0,y_0),求证方程,f_1(x,y) λf_2(x,y)=0的曲线也过点P(λ是任意实数)。我们把上题所叙述的事实称为“过两已知曲线  相似文献   

17.
三三角方程根的通值式之等效性的检验由于三角函数的周期特性,带来了三角方程一般解(如果有解)是无穷多个,常用一个含有整数n(或k)的式子来表示,这个式子就称为方程的根的通值式。由于用不同方法解方程,往往使同一方程得到各种形式不相同的通值式,究竟那一种是正确的?怎样检查?这里介绍两种检查方法。首先,根的通值式必须满足两个条件: (1)不论n取正整数或负整数或零,所得的x值,必须是这方程的根,这叫做通值式  相似文献   

18.
一、二曲线的和系定义1:在实数域内,设有二曲线 f_1(x、y)=0,f_2(x、y)=0,称曲线系mf_1(x、y)+nf_2(x、y)=0为曲线f_1、f_2的和系.m、n是不为0的实参数.令λ=n/m,则曲线f_1、f_2的和系可以写成: f_1(x、y)+λf_2(x、y)=0,当f_1=f_2时,规定λ≠—1。性质1:当二曲线f_1(x、y)=0与f_2(x、y)=0有公共点时,二曲线的和系f_1(x、y)+λf_2(x、y)=0为过f_1、f_2公共点的曲线系。性质2:除曲线f_1(x、y)=0与f_2(x、y)=0的公共点以外,二曲线的和系f_1(x、y)+λf_2(x、y)=0与曲线f_1或f_2没有其他的公共  相似文献   

19.
在平面解析几何中,我们经常遇到过两条曲线交点的曲线方程的问题。它有什么特征呢?现叙证如下: 性质1 若曲线l_1:f_1(x,y)=0与l_2:f_2(x,y)=0有交点为P_0(x_0,y_0),则曲线l_3:f_1(x,y)+λf_2(x,y)=0也经过交点P_0(x_0,y_0)其中λ为一切实数。  相似文献   

20.
增减根问题在方程求解过程中(特别在解分式方程、无理方程、指数对数方程以及三角方程中)是经常遇到的,是一个比较复杂的问题。本文拟对这个问题作较系统的探讨,供有关教学参考。 1.定理:如果函数ω(x,y,…,z)定义在方程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号