首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

2.
用恒等式解题,大体上有两个途径:一是应用已知的基本恒等式求解;二是根据问题的特点推证出一个适用的恒等式,这通常需要相当高的运算技巧和能力.例1设a、b、c都是正数,满足条件(a2 b2 c2)2>2(a4 b4 c4).求证:a、b、c一定是某个三角形的三边长.证明先把条件改成2a2b2 2b2c2 2c2a2-a4-b4-c4>0.应用恒等式(这是一个较常见的因式分解)2(a2b2 b2c2 c2a2)-a4-b4-c4=(a b c)(a b-c)(b c-a)(c a-b),得(a b c)(a b-c)(b c-a)(c a-b)>0,即(a b-c)(b c-a)(c a-b)>0.若上式左边有两个因式为负(另一个因式为正),例如,若a b-c<0,b c-a<0,两式相加得b<0,这…  相似文献   

3.
第 6届 IMO第 2题是设 a,b,c是△ ABC的三边长 ,求证a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≤ 3 abc (1)受启发 ,本文得到 (2 )式的如下对偶形式定理 1 设 a,b,c,r是△ ABC的三边长及内切圆半径 ,则有a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≥ 12 r(a + b + c) (2 )证明 :记 p =12 (a + b + c) ,R为△ ABC的外接圆半径 ,S为△ ABC的面积 ,由海伦公式 S = p (p -a) (p -b) (p -c) =rpabc =4RS =4Rrp得左边 =2 a2 (p -a) + 2 b2 (p -b) +2 c2 (p -c)≥2× 3 3 a2 b2 c2 (p -a) (p -b) (p -c) =63 16R2 r2 p2 .r2 p =…  相似文献   

4.
题1 已知a,b,c∈(0,1),求证(1-a)b,(1-b)c,(1-c)a中至少有一个不大于1/4(《中学数学》1994年第11期第20页)。 证 因为(1/2)(1-a)b (1/2)(1-b)c (1/2)(1-c)a≤((1-a) b)/2 ((1-c) a/2=3/2,所以(1/2)(1-a)b,(1/2)(1-b)c,(1/2)(1-c)a中至少有一个不大于1/2,即(1-a)b,(1-b)c,(1-c)a中至少有一个不大于1/4。  相似文献   

5.
设实数x_1、x_2为方程x~2-px q=0的两实根,则由韦达定理有x_1 x_2=p,x_1x_2=q,又上述方程的判别式Δ=p~2-4q≥0。 把韦达定理(及其逆定理)和根的判别式相结合,可以解决很多类型的问题。 一、求取值范围 例1 实数a、b、c满足a~2-bc-6a 3=0,b~2 c~2 bc-2a-1=0。  相似文献   

6.
一、韦达定理的意义一元二次方程ax~2+bx+c=0的根x_1、x_2与系数a、b、c有如下关系:x_1+x_2=-b/a,x_1x_2=c/a. 这是法国数学家韦达于1559年首先给出的,因而称为“韦达定理”.特别地,对于方程x~2+px+q=0而言,它的两根x_1、x_2满足x_1+x_2=-p,且x_1x_2=q. 顺便提一下韦达定理的逆定理:  相似文献   

7.
题设a、b、c∈(0,√2),且a2+b2+c2+abc=4,求证:abc≥(2-a2)(2-b2)(2-c2)≥(4a2-a4-2)(4b2-b4-2)(4c2-c4-2).  相似文献   

8.
《湖南教育》2007,(4):45-46
85.设正数a,b,c满足a b c=3,求证:ab 1 bc 1 ca 1 1ab b1c c1a≥6.证明:首先证明下面的命题:设t>0,p,q∈R,且p·q>0,则1 tp q≥tp tq,当且仅当t=1时,等号成立.因为1 tp q≥tp tq#1 tp q-tp-tq≥0#1 tp·tq-tp-tq≥0#(tp-1)(tq-1)≥0.因为t>0,p,q∈R,且p·q>0,所以tp-1与tq-1同号,所以(tp-1)(tq-1)≥0,即要证的不等式1 tp q≥tp tq成立.在不等式1 tp q≥tp tq中,令q=p 1,则有1 t2p 1≥tp 1 tp(p>0,或p<-1),两端同除以tp得tp 1 t1p≥t 1.所以ab 1 a1b≥a 1,bc 1 b1c≥b 1,ca 1 c1a≥c 1,这三个同向不等式相加并将a b c=3代入得ab 1 bc 1 ca 1…  相似文献   

9.
1.已知abc≠0,且a b c=0,则代数式a2/bc b2/ca c2/ab的值是( )(A)3. (B)2. (C)1. (D)0.2.已知户,q均为质数,且满足5p2 3q=59,则以p 3,1-P q,2p q-4为边长的三角形是( )  相似文献   

10.
文[1]-[4]研究了如下几个有意思的不等式: 问题1:已知a,b,c为正实数,求证:(a2+ b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b) 问题2:已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+ b-c)(b+c-a)(c+a-b) 问题3:若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

11.
正引言文[1]—[4]研究了如下几个有意思的不等式:问题1已知a,b,c为正实数,求证:(a2+b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b).问题2已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+b-c)(b+c-a))c+a-b).问题3若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

12.
91.如图,在△ABC中,AD是∠BAC的平分线,BE=CF,且M、N分别是BC、EF的中点.求证:AD∥MN.(安徽省肥西中学231200刘运宜提供)92.设a、b为正整数,求证:(a b)(a2 b2)(a3 b3)·…·(a323 b323)≥(a162 b162)323.(湖北黄梅县一中435500王卫华提供)93.若a、b、c∈R ,且a b c=1,则有bac-!"1cba-!"1·cab-!"1≤8.(陕西省永寿中学713400安振平提供)94.已知正实数a、b、c满足a b c=abc.求证:aa bb bb cc cac a>25.(湖南武冈市第十中学422400邓集春提供)95.设{an}是各项都大于1的正项等差数列,n为大于1的自然数,求证:1-a11!"1-a12!"·…·1-a1…  相似文献   

13.
琴生不等式是:若f(x)是区间L上的凸函数,ai∈L ,i=1 ,…,n ,则 ni=1f(ai)≤nf( 1n ni=1ai) .我们还有(以下把 ni=1记作 )定理 设f(x)是闭区间[a ,b]上的凸函数,ai∈[a ,b],i=1 ,…,n ,则f(ai)≥kf(b) (n -k -1 ) f(a) f(c) .①其中 k = ai-nab-a ,c= ai-kb -(n -k -1 )a .证明:任取x1、x2 ,使a 相似文献   

14.
第一试  一、选择题(满分42分,每小题7分)1 .已知abc≠0 ,且a b c=0 ,则代数式a2bc b2ca c2ab的值是(  ) .A .3  B .2  C .1  D .0标准答案:原式=-(b c)·abc -(c a)·bca -(a b)·cab =…=3 ,选A .别解1 :∵a3 b3 c3-3abc =…=(a b c)(a2 b2 c2 -ab-bc-ca) =0 ,∴a3 b3 c3=3abc.∴原式=a3 b3 c3abc =3 .别解2 :取a =b=1 ,c=-2 .下略.2 .已知p、q均为质数,且满足5 p2 3 q =5 9,则以p 3 ,1 -p q ,2 p q -4为边长的三角形是(  ) .A .锐角三角形   B .直角三角形C .钝角三角形   D .等腰三角形标准答案1 :…  相似文献   

15.
《中学数学教学》2020年第1期上,“有奖解题擂台(127)”刊有以下问题在锐角△ABC中,求证:1cosA+1cosB+1cosC≥1sinA2sinB2sinC2-2.证法1(扬学枝提供)设△ABC边长为BC=a,CA=b,AB=c,由对称性,不妨设a≥b≥c,则原式等价于∑2bc-a2+b2+c2≥8abc∏(-a+b+c)-2∑(2bc-a2+b2+c2+1)≥8abc∏(-a+b+c)+1∑(a+b+c)(-a+b+c)-a2+b2+c2≥-∑a3+∑a(b+c)2∏(-a+b+c)∑(a+b+c)(-a+b+c)-a2+b2+c2≥∑a(a+b+c)(-a+b+c)∏(-a+b+c)∑-a+b+c-a2+b2+c2≥∑a(a-b+c)(a+b-c),由于∑a(a-b+c)(a+b-c)=12∑(1a-b+c+1a+b-c)=∑1-a+b+c.  相似文献   

16.
1 案例的呈现2005年天津市中考有一道代数综合题:例已知二次函数 y=ax~2+bx+c.(1)若 a=2,c=-3.且二次函数的图象经过点(-1,-2),求 b 的值;(2)若 a=2,6+c=-2,b>c,且二次函数的图象经过点(p,-2),求证:b≥0;(3)若 a+b+c=0,a>b>c,且二次函数的图象经过点(q,-a),试问当自变量 x=q+4时,二次函数y=ax~2+bx+c 所对应的函数值 y 是否大于0.并证明你的结论.本题的核心内容在第(3)问(第(1)、(2)问只是其  相似文献   

17.
Goldner不等式是指:∑a4≥16S2.经过探讨,笔者现给出它的加强式:定理224216(Rr?1)S≤∑a≤16(2Rr2?1)S,其中a,b,c表示△ABC的三边长,P为半周长,S为面积,R为外接圆半径,r为内切圆半径,∑表示循环和.为证明此不等式,先看下面的两个引理:引理1∑a4=2(a2b2+b2c2+c2a2)?16S2.证明由海伦公式得S=p(p?a)(p?b)(p?c)得p(p?a)(p?b)(p?c)=S2.∵p(p?a)(p?b)(p?c)=(a+b+c)(b+c?a)(c+a?b)(a+b?c)/16=[(b+c)+a]?[(b+c)?a]?[a?(b?c)]?[a+(b?c)]/16=[(b+c)2?a2]?[a2?(b?c)2]/16=[2b c+(b2+c2?a2)]?[2bc?(b2+c2?a2)]/16=[4b2c2?(b2+c2?a2)2]/16=(2a2b2+2…  相似文献   

18.
设ta、tb、tc分别是ABC的三条角平分线长,a、b、c为三边长,R、r、p分别是三角形的外接圆半径、内切圆半径、半周长,∑表示循环和.文[1]证明了不等式bct2a cat2b abt2c≥4.文[2]将此不等式加强为∑bct2a≥34Rp23.本文给出它的最佳形式∑bct2a=Rr 2.证明:由三角形角平分线长的公式知ta=2bccosA2b c.  则t2a=4b2c2cos2A2(b c)2=2b2c2(1 cosA)(b c)2=2b2c2(b c)21 b2 c2-a22bc=bc(b c a)(b c-a)(b c)2=4bcp(p-a)(2p-a)2.故bct2a=(2p-a)24p(p-a)=14·pp-a 12 p-a4p.同理,cat2b=14·pp-b 12 p-b4p,abt2c=14·pp-c 12 p-c4p.  于是,有∑b…  相似文献   

19.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

20.
问题 1 《数学教学》2 0 0 3年第 2期“数学问题与解答”栏目中的第 5 80题为设a、b、c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b≥ 32 .①笔者试图探索这个新颖不等式的上界 ,得出问题 1 .1 设a ,b,c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b<73 .②综合不等式①、②得问题 1 .2 设a ,b,c为△ABC的三边 ,求证 :32 ≤ a2a +b -c+b2b +c -a+c2c+a -b<73 .③为了证明不等式③ ,笔者首先想到了它的类似 :问题 1 .3 设x ,y ,z为任意正实数 ,求证 :xy +z+yz +x+zx +y≥ 32 .④于是 ,联想到 :能否将不等式③转化为三…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号