首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“已知a>0,b>0,a+b=1,求证(a+1/a)~2+(b+1/b)~2≥25/2”,这是一个常见的习题,值得深入讨论一番。为了便于本文的讨论,先给出如下解法: ∵ a>0,b>0,a+b=1 ∴ 1/a+1/b=(a+b)(1/a+1/b)≥4 ∴ (a+1/a)~2+(b+1/b)~2≥ 2·((a+b+1/a+1/b)/2))~2≥ 2·(1+4/2)~2=25/2 这里,用到了不等式(a_1+a_2)(a_1~(-1)+a_2~(-1)≥2~2和a_1~2+a_2~2≥2((a_1+a_2)/2)~2.实际上,一般地有不等式(sum from k=1 to m ak)(sum from k=1 to m a_k~(-1))≥m~2和  相似文献   

2.
对不等式6~(1/2)≥(1 a)~(1/2)≥(1 b)~(1/2)≥1 2~(1/2)(a≥0,b≥0,a b=1)可作如下推广:  相似文献   

3.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

4.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

5.
命题 若实数 a,b,c满足 a b c=0 ,则  ( ) a3 b3 c3=3abc;( )关于 x的方程 ax2 bx c=0必有一根为 1;( ) b2 ≥ 4ac.证明  ( )由乘法公式 (a b c) (a2 b2 c2 - ab- bc- ca) =a3 b3 c3- 3abc知 ,当 a b c=0时 ,a3 b3 c3=3abc.( )当 x=1时 ,ax2 bx c=a b c= 0 ,故 x=1是方程 ax2 bx c=0的根 .( )当 a≠ 0时 ,ax2 bx c=0是一元二次方程 ,由 ( )知它有实数根 ,故△≥ 0 ,即b2 - 4ac≥ 0 ,b2 ≥ 4ac.当 a=0时 ,b2≥ 4ac显然成立 .这是一个重要的命题 ,它的应用极为广泛 ,利用它来解决条件中出现 (或可化成 ) a b …  相似文献   

6.
方程af(x)+f(x)~(1/b)=c,一般用代换法来解。但当a、b、c为整数,a>0时,用观察法来解,显得更为简便,下面介绍这种方法。定理:如果存在平方数m≥0,使 c=am+m~(1/b)则方程af(x)+f(x)~(1/b)=c ①与方程(f(x)-m~(1/2))(f(x)+b/a+m~(1/2)=0同解②其中f(x)为x的解析式。证明:设a是方程①的解,则 af(a)+f(a)~(1/b)=am+m~(1/b)∵ f(x),m≥0,  相似文献   

7.
不等式a b/2≥ab~(1/2)(a,b∈R )是中学数学重要不等式之一.其应用广泛,技巧性强,加强这一不等式的教学,对提高学生的分析问题、综合应用知识的证题能力和创造思维能力,以及诱发学生对数学的美感,增长他们创造数学美的能力是大有好处的.本文从不同的角度给出这一不等式的几种证法,以供参考. 定理如果a,b∈R ,那么a b/2≥ab~(1/2)(当且仅当a=b时,取“=”号). 证法一:(用二次根式的性质证) 当a≠b时,(a~(1/2)-b~(1/2))~2>0; 当a=b时,(a~(1/2)-b~(1/2))~2=0. 故(a~(1/2)-b~(1/2))~2≥0. 即a b-2ab(1/2)≥0. 故a b/2≥ab~(1/2). 证法二:(用面积证)如图1所示, 当 a≠b 时,S_(正方形ABCD)>4S_(矩形AB_1C_1D_1); 当a=b时,S_(正方形ABCD)=4S_(矩形AB_1C_1D_1), 故 S_(正方形ABCD)≥4S_(矩形AB_1C_1D_1) (a b)~2≥4aba b/2≥ab~(1/2).  相似文献   

8.
文 [1]、[2 ]证明了下面的等式 :设 a,b,c,d∈ (0 ,+∞ ) ,且 c+d=1,c2a+d2b=1a+b,求证 :c4a3 +d4b3 =1(a+b) 3 . 1文 [2 ]还把 1式推广为 :cm + 1am +dm + 1bm =1(a+b) m. 2本文给出 1的不等式证法 ,并把 1,2式的条件推广 ,同时给出其应用 .1 简证 由 x2y≥ 2 x- y知c2aa+b≥ 2 c- aa+b,d2ba+b≥ 2 d- ba+b.因为 c+d=1,所以 c2aa+b+d2ba+b≥ 2 (c+d) - (aa+b+ba+b) =1.由等号成立条件知 c=aa+b,d=ba+b,故 c4a3 +d4b3 =a4a3 (a+b) 4 +b4b3 (a+b) 4 =1(a+b) 3 .2 推广定理 设 a,b,c,d∈ (0 ,+∞ ) ,m,n∈N* ,m≠ n,若 c+d=1且 cm + 1am …  相似文献   

9.
利用增量代换来解答和处理问题的方法叫做增量代换法。增量代换法是中学教学中的一种重要方法,在解决众多的数学问题中表现出奇妙的作用。一、解方程例1 解方程 (2x~2-3x+7)~(1/2)-(2x~2-3x+2)~(1/2)=1。解;由此方程的特征,可设 (2x~2-3x+7)~(1/2)=1+a, (1)则(2x~2-3x+2)~(1/2)=a(a≥0)。 (2)(1)~2-(2)~2得a=2。∴ (2x~2-3x+2)~(1/2)=2。解得 x_1=2,x_2=-1/2。经检验知,均为原方程的根。二、证不等式例2 设a,b,m∈P~+,且aa/b。证明:由已知不妨设b=a+a(a>0),则  相似文献   

10.
数学问答     
52.问:设有正数a、b,满足ab=a b 3, 求ab的取值范围. (湖北秭归县一中三(6)班王立强) 答:ab=a b 3≥2 3.所以ab-2-3≥0.视其为关于(ab)~(1/2)的二次不等式,解得(ab)~(1/2)≥3,或者(ab)~(1/2)≤-1(舍去). ∴ab≥9.ab的取值范围为[9, ∞).当且仅当a=b且(ab)~(1/2)=3时,即a=b=3时取等号. (河南师大附中赵振华)  相似文献   

11.
因为a、b是一元二次方程x~3-(a b)x ab=0的两个根,设S_0=a~0 b~0,S_1=a b, S_2=a~2 b~2,S_2-(a b)S_1 abS_0=0 S_3=a~3 b~3,S_3-(a b)S_2 abS_0=0 S_n=a~n b~n,S_n-(a b)S_(n-1) abS_(n-2)=0 所以当n≥2时,有递推式,S_n-(a b)S_(n-1) abS_(n-2)=0 (*) 因为递推式由一元二次方程推出,结果又与一元二次方程极其类似,所以它与一元二次方程一样用途较大,下举数例说明。例1 若m~2=m 1,n~2=n 1,且m≠n,则m~5 n~5=____(江苏省第四届初中数学竞赛试题)  相似文献   

12.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

13.
定义 设σ_1=a b C,σ_2=bc ca ab,σ_3=abc则称σ_1,σ_2,σ_3为关于a,b,c的基本对称多项式。 三个非负实数a,b,c的基本对称多项式,常见的不等关系式有: σ_1~2-3σ_2≥0即(a b c)~2≥3(bc ca ab),σ_1~3-27σ_3≥0即(a b c)~3≥27abc等等。 本文建立了一个新的关系式,即下述 定理 三个任意非负实数的基本对称多项式σ_1,σ_2,σ_3有下面的不等关系式:  相似文献   

14.
问题已知a,b∈R~+,x,y∈R,且a+b=1,求证:ax~2+by~2≥(ax+by)~2.解法1作差比较简单明了ax~2+by~2-(ax+by)~2=ax~2+by~2-a~2x~2-b~2y~2-2abxy=a(1-a)x~2-2abxy+b(1-b)y~2=ab(x~2-2xy+y~2)=ab(x-y)~2≥0.解法2代换在前作差在后因为a+b=1,令T=(a+b)(ax~2+by~2)-(ax+by)~2=abx~2+aby~2-2abxy=ab(x-y)~2≥0.评析"作差法"是证明不等式的一种最基本的方法,巧用作差法是我们解决不等式证明问题的一种行之有效的途径,如果应用得恰当,能切中要害,问题  相似文献   

15.
近年来,部分地市的数学中考命题中出现了如下试题:若(4b)~(1/a b)与(3a b)~(1/2)是同类二次根式,则 a,b 的值是( )。A.a=0,b=2B.a=1,b=1C.a=0,b=2或 a=1,b=1D.a=2,b=0此题所给的答案是 A 据此,其解法为:因(4b)~(1/a b)=2(b)~(1/a b),由a b=2,b=3a b,解得 a=0,b=2.选 A.解法的依据显然是同类二次根式的定义:几个二次根式化成最简二次根  相似文献   

16.
题设a>0,b>0,a b=1,求证: (a 1/a)~2 (b 1/b)~2≥25/2 该题在不少数学参考书上都有出现,但其证法繁杂,现给出以下两种证法,供读者参考。  相似文献   

17.
我们知道,对于任意的实数a和b,有a2+ b2≥2ab(1)当且仅当a=b时取等号,若ab >0,在(1)的两边同除以ab,即得a/b+b/a≥2(2),当且仅当a=b时取等号. 在(1)中,若令u=a2,v=b2,显然u≥0, v≥0。则有,当且仅当u=v时取等号,现在我们利用这些重要不等式来解一  相似文献   

18.
在解题过程中 ,我们经常遇到形如a +b +c =0的条件 ,笔者在教学中发现 ,在此条件下有许多简捷、优美的结论 ,且有着广泛的应用。为此 ,本文探讨在条件a +b+c=0下的结论及相应的解题功能 ,供参考。1 结论结论 1 若a +b +c =0 ,则b2 ≥ 4ac或a2 ≥ 4bc或c2 ≥ 4ab。证明 因为a +b +c=0 ,所以b =-(a +c) ,b2 =(a +c) 2 =a2 +c2 +2ac≥ 2ac+2ac=4ac ,即b2 ≥ 4ac,同理可得a2 ≥ 4bc,c2 ≥ 4ab ,命题得证。结论 2 若a +b+c=0 ,则a3+b3+c3=3abc。证明 因为a +b +c=0 ,所以有a +b =-c,(a +b) 3=-c3,即a3+3a2 b +3ab2 +b3+c3=0 ,也即a3+3ab(a +…  相似文献   

19.
(1 )首先从几个简单的特例来观察 ,分别令 (a ,b) =(2 ,2 ) ,(2 ,3 ) ,32 ,2 ,(3 ,4) ,得出 a2b-1 +b2a-1 之值分别为 8,1 1 ,414 ,1 1 .因此猜测当a =2 ,b=2时 ,a2b -1 +b2a -1 =8可能是最小值 . (2 )由不等式x2 +y2 ≥ 2xy,或x +y≥2xy(x≥ 0 ,y≥ 0 )可得当a >1 ,且b>1时 ,a2b-1 +b2a-1 ≥ 2 a2b-1 · b2a-1 =2 aa-1bb-1 .( )又任一正实数x ,因为x2 -4x +4=(x-2 ) 2 ≥ 0 ,所以x2 ≥ 4(x -1 ) ,即得x ≥ 2 x-1 ,也就是 xx -1 ≥ 2恒成立 .当且仅当x =2时等号成立 ,所以由 ( )式可得 a2b-1 +b2a-1 ≥ 2· 2 ·2 =8,而且仅当a =b=2时 ,a2b…  相似文献   

20.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号