首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
棣莫佛定理是复数中的一个重要定理,高中代数课本第二册是用数学归纳法证明的。本文通过构造一个辅助等比数列,给出该定理的一个巧妙证法。 [棣莫佛定理]设n为自然数,r为正实数,i为虚数单位,则[r(cosθ+isinθ]~n=r~n(cosnθ+isinnθ)。证明:显然,只需证明(cosθ+isinθ)~n=cosnθ+isinnθ即可。令a_n=cosnθ+isinnθ,将n拆成(n-1)+1,并利用和角的正、余弦展开式易得:a_n=cosθ[cos(n-1)θ+isin(n-1)θ]+isinθ[cos(n-1)θ+isin(n-1)θ]=(cosθ  相似文献   

2.
我们知道:na(a≥0,a∈R)在实数集上是表示a的n次算术根,它是一个单元素集合,而nz(z≠0,z∈C)在复数集上是表示一个具有n个元素的集合,即:nz={nr(cos2kx θn isin2kx θn)|z≠0,θ=argz,r=|z|,k=0,1,…,n-1},由于在实数集与复数集上数的  相似文献   

3.
统编教材中有棣莫佛定理:设复数z=r(cosθ+isinθ),n∈N,则 z~n=r~n(cosnθ+isinnθ) (1) 利用复数的指数形式可以证明下列等式(证明从略): [r(cosθ+isinθ)]~(-n)=1/r~n[cos(-nθ)+1sin(-nθ)] (2) [r(cosθ-isinθ)]~n=r~n(cos nθ-isinnθ) (3) 下面分五方面举例说明(1)、(2)、(3)的应用。限于篇幅,仅各举一、二例。 (一) 求解复数的乘方。  相似文献   

4.
在许多复数问题中会出现有关 z,z,1z的式子 ,利用这几个复数相对应的点的位置关系解题 ,别有趣味 .设 z=r(cosα isinα) (r>0 ) ,则z=r[cos(-α) isin(-α) ],1z=1r[cos(-α) isin(-α) ].它们的对应点如图 1例 1 已知 z 1z=cos x(x∈R) ,且 | z|≤ 1 ,求 argz的取值范围 .解 先设 | z| <1 ,如图 2 ,此时 z 1z所对应的向量不在 x轴上 ,所以 z 1z ≠cos x,故 | z| <1不可能 ,于是 | z| =1 .令 z=cosθ isinθ(0≤θ<2 π) ,则由z 1z=z z=2 cosθ=cos x,即 cosθ=12 cos x∈ [- 12 ,12 ],所以 θ∈ [- π3 ,π2 ]∪ [4π3…  相似文献   

5.
[定理1] 设a_1,a_2,…,a_n∈(0,π),a_1+a_2+…+a_n=φ_0(定值),则sina_1+sina_2+…+sina_n≤nsinφ_0/n.当且仅当a-1=a_2…=a_2=φ_0/n时取“=”号(n≥2). 证:(1) 当n=2时,sina_1+sina_2=2sin(a_1+a_2)/2cos(a_1-a_2)/2.  相似文献   

6.
(一) 我们知道,方程z~n-1=0(n是自然数)有n个复根α_0,α_1,……,α_(n-1),其中α_k=cos2k/nπ+isin2k/nπ(k=0,1,2…,n-1),根据一元n次方程的韦达定理,有α_0+α_1+α_2+…+α_(n-1)  相似文献   

7.
定理 在△ABC中 ,∠A =n∠B ,a、b、c分别为∠A、∠B、∠C的对边 ,a、b、c的关系记为 fn=fn(a ,b,c) =0 ,则有 (记N =14( 2n + ( -1 ) n +1+ 1 )fn=∑nk =1( -1 ) k- 1C2k - 1n b[4a2 c2 -(a2 -b2 +c2 ) 2 ]k - 1(a2 +c2 -b2 ) n- 2k+1-a( 2ac) n - 1.证明 :由 (cosB +isinB ) n =∑nk=0 Ckncosn -kB·(isinB) k=cosnB +isinnB ,得 sinnB =∑Nk=1C2k- 1n ( -1 ) k- 1sin2k- 1B ·cosn - 2k+1B .①又由sinAsinB=sinnBsinB =ab ,sinnB =absinB ,代入①即得∑Nk=1( -1 ) k - 1C2k- 1n sin2k- 2 B·cosn - 2k+1B -a =0 .②由余…  相似文献   

8.
一、选择题 :本大题共 12小题 ,每小题 5分 ,共 6 0分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 .1.已知f(x) =1+x21-x2 ,则下列关系中不正确的是 (   )A .f(x) =f( -x)B .f( -x) =f 1xC .f( |x|) =f( -x)D .f( |x|) =f -1x2 .设f:x→x2 是集合A到集合B的映射 ,如果B ={1,2 } ,则A ∩B只可能是(   )A .Φ     B .Φ或 {1}C .Φ或 {2 }D .{1}3.已知复数z=1+i,复数ω =z2 + 4z-2 ,那么ω的三角形式为 (   )A .2 2 (cos π4+isin π4)B .2 2 (cos3π4+isin3π4)C .2 2 (cos5π4+isin5π4)D .2 2 (cos7π4+i…  相似文献   

9.
1 题目1 z∈C,|z|=1,解方程z~5 z=1,(苏州大学《中学数学》编辑部编《高三数学教学与测试》 解法1 由|z|=1,可设z=cosθ isinθ,代入原方程有 cos5θ isin5θ cosθ isinθ=1, (1) (2) (1)~2 (2)~2得cosθ=’言, 经检验是原方程的根。  相似文献   

10.
假如我们要求复数W=r(cosθ+isinθ)的n次方根,这就是求满足W_k~n=W的复数W_k.方法考虑W_k=r~(1/n)(cos(2kπ+θ/n)+isin(2kπ+θ/n)),这里k是任意整数使用棣美佛定理,就得到因此,对任意整数k,W_k是W的n次方根.因为W_k~n=W,即W_k~n-W=0,于是,对任意整数k,Z=W_k是以Z为变量的n次多项式方程Z~n-W=0的一个解.因为n次多项式方程有且仅有n个解(可以是重解),因此方程Z~n-W=0存在且只存在n个解,换句话说,即使存在无限多个W_k'~s,赋予不同的整数k,它们中仅有n个是不同  相似文献   

11.
我们知道:n√a(a≥0,a∈R)在实数集上是表示a的n次算术根,它是一个单元素集合,而n√z(z≠0,z∈C)在复数集上是表示一个具有n个元素的集合,即:n√z={n√r(cos 2kπ θ/n isin2kπ θ/n)|z≠0,θ=argz,r=|z|,k=0,1,…,n-1},由于在实数集与复数集上数的n次方根的概念截然不同,因此,实数集上的某些性质不能完全机械地搬到复数集上去.  相似文献   

12.
1SimplificationinsphericalcoordinatesInthesphericalcoordinatessystem,??y?x=rsinθcosφ,z=rsinθsinφ,=rcosθ,???00≤θ<π,≤θ<2π.Setk=?tanφ,yandK=?zcotθ,then,xxcosφcotθu=r0K(t,t')istransformedintor=r0K(tanφ,cos),φandis,whenφ=0,simplifiedintoatruncatedcurver=r°K(0,cotθ).Thelatteriseasiertoberesolvedandcanreverttotheformerthroughturningaroundfor180°.Example.Thereexistsu=z2=(rcosθ)2x2+y2+z2r2=r°cos2θ?φ°,0≤θ≤π,0≤φ<2π.AsshowninFig.1,XX′isthediameteroftheunitcircle,OP0i…  相似文献   

13.
变量代换是解数学题的一种重要策略 ,其中三角代换更是有着广泛而灵活的应用。它能使问题得到巧妙的转化 ,起到化繁为简、化难为易的作用。若运用得法 ,往往能收到事半功倍的效果。1 求最值例 1 已知 x21 6+y29=1 ,求u =x2 +2xy +y2 的最值 ,及相应的x ,y的值。解 据已知 ,可令x =4cosθ,y =3sinθ(θ∈R) ,则u =1 6cos2 θ +2 4sinθcosθ+9sin2 θ=72 cos2θ+1 2sin2θ +2 52 =2 52 sin( 2θ +φ) +2 52 ,其中cosφ =2 42 5 ,sinφ =72 5 ,且 0 <φ <π2 。由此可得 ,cos φ2 =721 0 ,sin φ2 =21 0 。当sin( 2θ +φ) =1时 ,取 2θ+…  相似文献   

14.
复数的模的最值问题,涉及知识面广,灵活性大,在各级各类考试中经常出现,现将几种常用解法予以归纳.1.利用复数的几何意义求最值例1已知复数z的模为2,则z-i的最大值为()A.1B.2C.!5D.3解:∵z=2,所以z所对应的点在以原点为圆心、2为半径的圆上,如图所示;∴z-i就表示圆上的点到点B的距离,即z-i的最大值为AB=3∴选D.2.利用三角函数法求最值例2已知z,z∈C,求W=z2-z 1的最值.解:∵z,可设z=cosθ isinθ∴W=z2-z 1=(cos2θ-cosθ 1) i(sin2θ-sinθ)=!(cos2θ-cosθ 1)2 (sin2θ-sinθ)2=!3-4cosθ-2cos2θ=!4cos2θ-4cosθ 1=2cosθ-1.当cosθ…  相似文献   

15.
一、选择题: 1.本题考查点到直线的距离公式,从圆的标准方程中读出圆心坐标(1,0),代入点到直线距离公式即得1/2,故选A. 2.本题重在考查复数运算中的棣莫佛定理,先化1/2+3~(1/2)/2i为三角形式,cos60°+isin60°,由棣莫佛定理知(cos60°+isin60°)3=cos180°+i,sin180°=-1,故选C.  相似文献   

16.
第 18届中国数学奥林匹克 (CMO)第一天试题第 3题是 :给定正整数n ,求最小的正数λ ,使得对任何θi ∈ ( 0 ,π2 ) (i =1,2 ,… ,n) ,只要tanθ1 tanθ2 …tanθn =2 n2 ,就有cosθ1 +cosθ2 +… +cosθn 不大于λ .解答试题可得cosθ1 +cosθ2 +… +cosθn 的最小上界 ,那么 ,自然要问cosθ1 +cosθ2 +…+cosθn 的最大下界是什么 ?笔者探讨得到了更为一般的结果 ,并一举两得———推广了第 4 2届国际数学奥林匹克试题 2和文 [1]的结果 ;给出了IMO42 -2 推广的最小上界 .定理 1 给定正整数n和λ≥n2 - 1,对于任何θi ∈ ( 0 ,π2 ) (i …  相似文献   

17.
美国《数学杂志》2005年二月问题征解1714:设m,n,x,y,z∈R+,且x+y+z=1,证明:44()()()()x ymx+ny my+nx+my+nz mz+ny421()()3()z+mz+nx mx+nz≥m+n.(1)文[1]将其推广为:设λ,ai∈R+(i=1,2,n),且1niia=∑=1,an+1=a1,则当k≥4或k≤0时,有321(1)(1)(1)nk kii i i i ia naλa aλaλ?=++∑++≥+.本文在文[1]的基础上对(1)式进行再推广:命题1设m,n,x,y,z∈R+,且x+y+z=1,α,β,γ∈R+,且α?(β+γ)=2,则()()()()x ymx ny my nx my nz mz nyαα+β+γ++β+γ1()()3()zmz nx mx nz m nα++β+γ≥+β+γ.命题2设m,n,x,y,z∈R+,且x+y+z=1,β,γ,l∈…  相似文献   

18.
函数y=a/sinx b/cosx的最小值   总被引:1,自引:0,他引:1  
本文应用待定系数法和柯西不等式给出下面函数的最小值 .定理 函数 y=asin x bcos x,x∈ ( 0 ,π2 ) ,a,b为正常数 ,则 ymin=( a23 b23) 32 .证明 设 m,n为待定正常数 ,由柯西不等式 ,有( asin x bcos x) ( msin x ncos x)≥ ( am bn) 2 ,1( m2 n2 ) ( sin2 x cos2 x)≥ ( msin x ncos x) 2 . 2由 1 ,2得asin x bcos x≥ ( am bn) 2m2 n2 . 3而 3式中等号成立的条件是 1 ,2式中的等号同时成立 ,即 :amsin2 x=bncos2 x且 msin x=ncos x,亦即 :m=3ak,n=3bk( k>0 ) ,代入 3式整理得asin x bcos x≥ ( a23 b23) 32 .下面举例说…  相似文献   

19.
求复数1+cosθ+isinθ(0<θ<π/2)的辐角主值的习题,很多同学见到这样的题,只能用三角公式去“凑”,若将符号进行一些变化,用这种方法不但很费时,而且也容易出错。下面介绍一种简便的方法,供参考。求复数Z=1+cosθ+isinθ(0<θ相似文献   

20.
文[1]中介绍了两个三角命题:命题1若sin3θ-cos3θ=-1,则sinnθ-cosnθ=-1(n为正奇数).命题2若sin3θ cos3θ=1,则sinnθ cosnθ=1(n为正整数).笔者阅后深受启发,继续探讨发现一、命题1是命题2的特例(在命题2中用-θ换θ同时令n为奇数就得到命题1).二、命题2可以推广为:命题3若sinmθ cosmθ=1(m为正奇数),则sinnθ cosnθ=1(n为正整数).证明当m=1时,sinθ cosθ=1,∴sinθcosθ=0,∴sinθ=0cosθ=1或csionsθθ==10.∴sinnθ cosnθ=1.当m≠1时,∵sinmθ≤sin2θ,cosmθ≤cos2θ,∴sinmθ cosmθ≤sin2θ cos2θ=1.当且仅当sinmθ=sin2θco…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号