首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:1°验证:n=1时,命题成立;2°在假设当n=k(k≥1)时命题成立的前提下,推出当n=k+1时,命题成立.根据1°,2°可以判定命题对一切正整数n都成立.数学归纳法的两个步骤("归纳奠基"和"归纳递推")是缺一不可的.使用数学归纳法证明时,只有把两个步骤结  相似文献   

2.
大家知道,利用数学归纳法来证明某些与自然数n有关的数学命题,关键是证明归纳步骤,即利用n=k命题成立这个假设条件来证明n=k+1时命题也成立。笔者现提出如何证明归纳步骤的一些技巧,供参考。一、要从n=k后条件出发“进”到n=k+1结论。例1.实数列{R_n}中,设R_1=1,R_(n+1)=1+n/R~2。求证:n~(1/2)≤R_n≤n~(1/2)+1。根据归纳法假设,当n=k时,命题成立,即 K~(1/2)≤R_k≤k~(1/2)+1 (1)要证明n=k+1时,命题也成立,即  相似文献   

3.
证明与正整数有关的命题时,常用数学归纳法,用数学归纳法证明的步骤是:(1)证明当n取第一个值n_0(n_0是满足命题的最小正整数)时,命题成立.(2)假设当n=k(k≥n_0,k∈N~*)时命题成立,证明当n=k+1时命题也成立.(3)由(1)(2)可知,命题对于从n_0开始的所有的正整数都成立.  相似文献   

4.
极限与导数     
课时一 数列归纳法 基础篇 诊断练习一、选择题1.用数学归纳法证明 1n +1+1n +2 +… +12 n>132 4 时由 k到 k +1,不等式左端变化是 (   )( A)增加 12 ( k +1) 一项 .( B)增加 12 k +1和 12 k +2 二项 .( C)增加 12 k +1和 12 k +2 二项且减少 1k +1项 .( D)以上结论均错 .2 .用数学归纳法证明 1+12 +13+… +12 n - 11) ,第一步是证明不等式 (   )( A) 1<2成立 .  ( B) 1+12 <2成立 .( C) 1+12 +13<2成立 .( D) 1+12 +13+14 <2成立 .3.若命题 p( n)对 n =k成立 ,可以推出它对 n =k+2也成立 ,又若 p( n)对 n =2成立 ,则 (…  相似文献   

5.
<正>数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法。它的基本步骤是:(1)验证n=n0时,命题成立(归纳奠基);(2)在假设当n=k(k≥n0,k∈N+)时命题成立的前提下,推出当n=k+1时,命题成立(归纳递推)。根据(1)(2)可以断定命题对一切大于等于n0的正整数n都成立。数列问题是与正整数有关的问题,本文就来谈谈数学归纳法在数列中的应用。例1已知正项数列{bn}的前n项和  相似文献   

6.
问题 试比较以下三对数的大小 :(1) 2 0 0 3 2 0 0 4与 2 0 0 42 0 0 3 ;(2 )log2 0 0 3 2 0 0 4与log2 0 0 42 0 0 5 ;(3 ) 1+ 12 0 0 32 0 0 3 与 1+ 12 0 0 42 0 0 4.赏析 (1) 第一对数的大小比较 ,可以转化为比较nn+1与 (n + 1) n(n∈N ,n≥ 3 )的大小 ,实际上 ,有结论nn+1>(n+ 1) n,其中n∈N ,n≥ 3 .证明有以下方法供参考 .证法 1 凡是与自然数有关的命题 ,都可以考虑用数学归纳法证明 ,该结论也一样 .(i)当n=3时 ,3 4 =81>43 =64成立 ;(ii)假设n =k ,k≥ 3时 ,kk+1>(k + 1) k成立 ,则当n =k+ 1时 ,有(k+ 1) k+2(k + 2 ) k+1=(k +…  相似文献   

7.
数学归纳法是数学证明中的一种重要方法,它适用于可以递推的有关自然数的命题,在初等数学和高等数学中都有广泛的应用。 数学归纳法是通过如下两个步骤来证明某些与自然数n有关的数学命题的证明方法: (1)验证当n取第一个值(如n=1)时,命题为真; (2)假设当n=k(k∈N)时命题为真,证得当n=k+1时命题也真;  相似文献   

8.
<正>数学归纳法的实质在于:将一个无法(或很难)穷尽验证的与正整数n有关的命题转化为证明两个普通命题:(1)证明当n取第一个值n_0(n_0∈N*)时命题成立;(2)假设n=k(k≥n_0,k∈N*)时命题成立,证明当n=k+1时命题也成立.有些表面看来与数学归纳法无关(或不易直接用数学归纳法证明)的命题,如能将其推广或加强,转化为一个更强的命题,而加强后的命题用数学归纳法易于证明,这样原来的命题就间接  相似文献   

9.
数学归纳法由“奠基”和“归纳”两步组成.在“归纳”过程中必须用到“归纳假设”.但是,如何用到“归纳假设”有时是有技巧.下面以均值不等式的证明为例予以展示. 已知a1,a2…,an(n≥2,n∈N*),是n个正实数,求证: 证明:(1)当,n=2时,由(a1+a2)2≥4a1a2可得a1+a2/2≥不等式成立.  相似文献   

10.
例1用数学归纳法证明等式:2 4 6 … 2n=n~2 n 1(n∈N~ ).误证:(1)易知n=1时等式成立;(2)假设当n=k时,等式2 4 6 … 2k=k~2 k 1成立,则当n=k 1时,有:2 4 6  相似文献   

11.
数学归纳法是数学里一种重要的证明方法。下面通过实例,列举几种证法。一、代数恒等式的证明一般采用的证明方法是在等式两边同加或同乘以第 k+1项,然后适当变形即可得证。例1 求证:1-(1/2)+(1/3)-(1/4)+…+/1(2n-1)-1/(2n=1/(n+1)+1/(n+2)+…+1/(2n)证明1°当 n=1时,左边=1-1/2=1/2.右边=1/(1+1)=1/2.等式是成立的。2°假设 n=k(k≥1)时等式成立,即  相似文献   

12.
数学归纳法是证明与自然数有关的数学命题的一种严密的证题方法。其证题步骤为:(1)证明当n取第一个值n_0(例如n_0=1或2等)时结论正确;(2)假设当n=k(k∈N,k≥n_0)时结论正确,证明当n=k+1时结论也正确。对于初学者来说,稍不注意,就会出现  相似文献   

13.
对某些与正整数有关的数学命题常采用下面的方法来证明它们的正确性:①当n取第1个值n0时,命题成立;②假设当n=k(k∈N*且k≥n0)时命题成立,证明当n=k+1时,命题也成立,这种证明方法叫做数学归纳法.用数学归纳法证明一个命题的基本结构是"两个步骤,一个结论".由于对以上情况理解不透、把握不准,故学生在应用数学归纳法时常常陷入七大误区.本文对此作了探讨.  相似文献   

14.
数学归纳法是一种重要的数学方法,运用数学归纳法证题的步骤是:(1)证明当n取第一个值n0(n0≥1)时,命题成立;(2)假设n=k(k∈N*且k≥n0)时命题成立,从而推出当n=k+1时,命题也成立.根据(1)、(2)可知,对一切n∈N*(n≥n0)命题成立.数学归纳法的第一步是验证命题的基础,第二步是论证命题的依据(传递性成立),两个步骤密切相关,缺一不可.需要注意的是:步骤(1)一般选取命题中最小的正整数n0作为起始值进行验证;步骤(2)推证当n=k+1时命题成立的前题,必须是当n=k时命题成立这个归纳假设,否则推理无效.作差法若命题中有关于n的连加式或数列的前n项和,则…  相似文献   

15.
<正>用数学归纳法证明数学命题时的基本步骤:(1)检验n=n_0(n_0∈N*)时成立;(2)假设n=k(k∈N*,k≥n_0)时成立,由n=k时成立推导n=k+1时成立,于是对一切n∈N*,n≥n_0,命题都成立,这种证明方法叫作数学归纳法。要注意由归纳假设到检验n=k+1的递推。运用数学归纳法证明命题要分为两步,第一步是递推的基础,第二步是递推的依据,这两步缺一不可。  相似文献   

16.
高中课本数学第三册所介绍的数学归纳法又可称为第一数学归纳法,它是证明关于自然数命题的一种有效方法。但是对于某些关于自然数的命题,它却是无能为力的。为此有必要引入第二数学归纳法:对于自然数的命题,如果(1)能验证n=1时命题正确;(2)假设所有的n≤k时命题正确,能推出n=k 1时命题也正确,那么此命题对于一切自然数都成立(证明略)。 在证明由相邻两个结果的正确性可推出第三个结果的正确性的自然数命题时,又可变通使用第二数学归纳法。这时应该(1)验证n=1,2时命题正确;(2)假设n=k-1,k时命题正确,由此推得n=k 1时也正确。  相似文献   

17.
数学归纳法是高中数学的重点、难点之一,也是培养学生形成"观察一归纳一猜想一证明"思维模式的重要载体.一方面是因为它是学生第一次接触到从有限到无限的认识方式,另一方面是因为学生初步意识到自然数的"后继"特征.这两个方面从认识上讲都有一定的难度,在高考和数学联赛试卷中体现得特别明显,其证题程序如下: (1)(归纳奠基)验证n取第一个值n0时结论正确; (2)(归纳奠基)假设n=k(k∈N*,n≥n0)时结论正确,证明当n=k+1时结论也正确.  相似文献   

18.
用数学归纳法证明不等式,特别是数列不等式,是一个行之有效的方法,也是中等数学中的一个基本方法,近些年高考试题中多次出现这类考题.运用这种方法证明不等式时,往往很多同学在证k到(k+1)的过程中卡了壳,断了思路,这是一种普遍现象.下面分析一下思路受阻的几种原因及转化策略.一、从k到(k+1)添项不足在从k到(k+1)的证明过程中,如果分析不透命题结构,就会造成添项不足,证明夭折.【例1】已知Sn=1+21+13+…+1n(n∈N*),用数学归纳法证明S2n&gt;1+2n(n≥2,n∈N*).思路受阻过程:(1)当n=2时,S22=1+21+31+41=1+1123&gt;1+22,命题成立.(2)设n=k(k≥3)时不等式成立,即S2k=1+21+31+…+21k&gt;1+2k,则当n=k+1时S2k+1=1+12+31+…+21k+2k1+1&gt;1+2k+2k1+1,要证明S2k+1&gt;1+k2+1,只须证1+2k+21k+1&gt;1+k2+1,即证2k1+1&gt;21.显然,当k≥2时这是不可能的,解题思路受到阻碍.受阻原因分析:∵Sn=1+21+31+…+1n,∴S2k+1=1+21+13+…+21k+2k1+1+2k1+2+…+...  相似文献   

19.
一、根据条件直接猜想例1已知数列{an}中的各项分别为182××132,…,8n(2n-1)2(2n+1)2,…,Sn是数列的前n项和,计算可得S1=98,S2=2254,S3=4489,S4=8810.根据结果猜测Sn的表达式,并用数学归纳法证明.解由S1=1-19,S2=1-215,S3=1-419,S4=1-811,猜想Sn=1-(2n1+1)2(n缀N+).证明如下:(1)当n=1时,S1=1-312=89,等式成立.(2)设当n=k(k≥1,k缀N)时,Sk=1-(2k1+1)2成立.∵an=(2n-1)82(n2n+1)2=(2n1-1)2-(2n1+1)2,∴Sk+1=Sk+ak+1=1-(2k1+1)2+(2k1+1)2-(2k1+3)2=1-[2(k+11)+1]2.由此可知,当n=k+1时,等式也成立.根据(1)、(2)可知,等式对任何n缀N+都…  相似文献   

20.
数学归纳法是证明与自然数有关命题的一种方法,在中学数学中占有重要地位.数学归纳法的一般步骤是:第一步,证明当 n=n_0时命题成立;第二步,假设当 n=k (k∈N,k≥n_0)时命题成立,在此基础上证明当 n=k 1时命题也成立.完成了这两步证明,即可断定命题对一切 n≥n_0的自然数均成立.运用数学归纳法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号