首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
我们熟知:当已知线段两端点为P_1(x_1,y_1)、P_2(x_2,y_2)、点P(x,y)分所成的比为λ时,点P的坐标是: x=(x_1+λx_2)/1+λ,y=(y_1+λy_2)/1+λ(λ≠-1) 如果我们将上述线段更换为圆柱、棱柱、圆台、棱台、圆锥、棱锥,则可得到一组与线段定比分点坐标公式形式相似的结论: 若换线段为棱台有:结沦一:设棱台上、下底的面积分别为S′、S,平行于两底的截面积为S_0,若截面分高的上、下两部分之比为λ,则:  相似文献   

2.
对于有向线段(P_1≠P_2),如果点 P 满足=λ,我们就称点 P 是把有向线段分成定比λ的分点。根据这个定义,点P_1、P_2的分点 P 就由λ唯一确定,当且仅当λ>0时,分点位于 P_1,P_2之间。λ<0且λ≠-1时,分点位于 P_1、P_2之外。我们已经有定比分点坐标公式:  相似文献   

3.
1 知识探究 1) 线段的定比分点 设P1与P2是直线l上的两点,点P为直线l上不同于P1、P2的任意一点,若存在一个实数λ,使得→P1P=λ→PP2,则λ叫做P分有向线段→P1P2所成的比,P点叫做有向线段→P1P2的定比分点.  相似文献   

4.
文[1]给出了椭圆上存在轴对称点的充要条件及其应用,本文把这个充要条件称为:定理1椭圆22E:ax2 by2=1(a、b>0)上存在关于直线l:y=kx t对称的相异两点的充要条件是k=t=0或k≠0且(a2?b2)k>t a2 b2k2.无独有偶,《数学通报》2007(3)P31给出了抛物线上存在轴对称点的充要条件及其应用,本文把这个充要条件称为:定理2抛物线E:y2=2px(p>0)上存在关于直线l:y=kx t对称的相异两点的充要条件是k=t=0或k≠0且pk4 2pk2 2t k<0.定理1.2分别给出了椭圆、抛物线上存在轴对称点的充要条件,我们自然要问:双曲线上存在轴对称点的充要条件是什么呢?为此本文探…  相似文献   

5.
人教版新老数学教材在定义“点P分有向线段P1P2→的比”时是这样给出的: (1)老《解析几何》教材P2上定义:有向直线l上的一点P,把l上的有向线段P1P2→分成两条有向线段P1P→和PP2→,P1P→和PP2→数量的比叫做点P分P1P2→所成的比,通常用字母λ来表示这个比值,λ=P1P/PP2,点P叫做有向线段P1P2→的定比分点. (2)人教版试验修订本教材第一册(下)P113上定义:设P1、P2是直线L上的两点,点P是L上不同于P1、P2的任意一点,则存在一个实数λ,使  相似文献   

6.
直线与圆     
☆基础篇 第一课时有向线段与定比分点 诊断检测 理解有向线段的数量、长度,点P分P1P2所成的比并能活用定比分点公式是学好解几起点,你站在起点上了吗?请做如何诊断练习: 一、选择题 1.设点P在有向线段AB的延长线上,P分AB所成的比为λ,则()(上海试题) (A)λ<-1.(B)-1<λ<0. (C)0<λ<1.(D)λ>1. 2.直线l经过点A(-5,-3)、B(-1,0)及第一象限内的点C,记点C分AB所成的比为λ则() (A)λ<-1.(B)-1<λ<0. (C)-5<λ<-1.(D)λ<-5或-1<λ<0.  相似文献   

7.
设P_1、P_2是直线l上的两点,点P是l上不同于P_1、P_2的任意一点,则存在一个实数λ,使(?)=λ(?),λ叫做点P分有向线段(?)所成的比,记为λ=(?).若P_1(x_1,y_1)、P_2(x_2,y_2)、  相似文献   

8.
文[1]介绍了椭圆定点弦的一个结论:命题设P是椭圆x2/a2+y2/b2=1上任意一点,M(-λ,0),M2(λ,0),(其中λ∈R,λ≠0,λ≠±a)是x轴上的两个定点,直线PM1,PM2分别与椭圆相交于P1,P2,过P1,P2的切线交于P′点,则点P′的轨迹  相似文献   

9.
设A(x1,y1) ,B(x2 ,y2 ) ,点P(x ,y)分有向线段AB所成的比APPB=λ(λ≠ - 1 ) ,则有 :x =x1+λx21 +λ ,y =y1+λy21 +λ .且当P为内分点时 ,λ >0 ;当P为外分点时 ,λ <0 (λ≠- 1 ) .当P与A重合时 ,λ =0 ;当P与B重合时 ,λ不存在 ,这就是定比分点坐标公式 .应用定比分点坐标公式 ,能使许多问题化难为易 ,化繁为简 ,有着非凡的功效 .1 比较大小例 1 已知a >0 ,b >0 ,0 0 ,则 1 -x =1 - λ1 +λ=11 +λ.于是 a2x+ b21 -…  相似文献   

10.
向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa, 由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ1, λ2, 使得λ1a+λ2b=0, 它的逆否命题为:若向量a, b不共线,(a≠0, b≠0),且λ1a+λ2b=0, 则λ1=λ2=0,这些结论可用来证明几何中三点共线与两直线平行等问题.举例说明如下:  相似文献   

11.
人教版新教材高一下册第109页有这样一道例题:如图(1),已知OA、OB不共线,AP=tAB,用OA、OB表示OP.图1解:∵AP=tAB∴OP=OA AP=OA tAB=OA t(OB-OA)=(1-t)OA tOB细察本例条件和结论可以发现:(1)A、B、P三点共线(2)(1-t) t=1(3)若t变化,则OA(或OB)的系数也随之变化.可以证明,下列推广成立.推广(一):不同三点A、B、P共线的充要条件是:存在λ(λ≠0,λ≠1),使OP=λOA (1-λ)OB,(亦可写为OP=λOA μOB,λ μ=1)其中O为平面内任一点,并且满足:1°λ>1时,点P在AB线段的反向延长线上2°0<λ<1时,点P在AB线段上3°λ<0时,点…  相似文献   

12.
定比分点的向量式:图1如图1,一般地,若P是分线段P1P2成定比λ的分点(即P1P=λPP2,λ≠-1)则OP=1 1λOP1 1 λλOP2.证明:设O为平面上任意一点,若P1P=λPP2.则OP-OP1=λ(OP2-OP)=λOP2-λOP∴(1 λ)OP=OP1 λOP2即OP=1 1λOP1 1 λλOP2.特别地,当λ=1时,点P是线段P1P2的中点,则OP=21(OP1 OP2)称为线段P1P2中点P的向量表达式.变式:一般地,若P、P1、P2三点共线,且P1P=nmPP2,O为任意一点,则OP=nOP1m mnOP2图2应用例析:一、探求点的坐标【例1】如图2,△ABC顶点A(1,1),B(-2,10),C(3,7),∠BAC平分线交BC边于D,求…  相似文献   

13.
我们知道,若设点P分有向线段→P1P2所成的比为λ,则有(Ⅰ)λ>0时,P内分→P1P2;(Ⅱ)λ<0(λ≠-1)时,P外分→P1P2;(Ⅲ)λ=0时P与P1重合;(Ⅳ)P与P2重合时,λ不存在.  相似文献   

14.
广州市高考模拟考试中有这样一道题:过点M(-2,0)的直线l与椭圆x2+2y2=2交P1,P2两点,线段P1P2的中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2的值等于( ).  相似文献   

15.
1.人教社版高中数学教材([1])的第一册(下)第115页中指出:“设P1、P2是直线l上的两点,点P是Z上不同于P1、P2的任意一点,则存在一个实数λ,使→P1P=λ→PP2,λ叫做点P分有向线段→P1P2所成的比,显然,当点P在线段P1P2上时,λ〉0;当点P在线段P1P2或P2P1的延长线上时,λ〈0.”  相似文献   

16.
定义:设P1、P2是直线l上两点,P是l上不同于P1、P2的任意一点,则存在一个实数λ。使P1P↑→=λPP2↑→,λ叫做点P分有向线段P1P2↑→所成的比.  相似文献   

17.
“设P1,P2是直线l上的2个点,点P是l上不同于点P1,P2的任意一点,则存在一个实数λ,使得P1P→=λPP2→,λ叫做点P分有向线段P1P2→所成的比”这是高中数学教材第一册(下)给线段定比分点所下的定义.笔者发现,只要对定义中的等式P1P→=λPP2→稍加变形,即可得到一个与线段定比分点坐标公式极为相似的向量形式结论.下面以定理的形式给出这一结论,并对其进行空间拓广.  相似文献   

18.
邹明 《中等数学》2006,(4):41-46
第一试一、选择题(每小题6分,共36分)1.已知sin2005x+cos2005x=1.则对任意k>0,必有().(A)sinkx+coskx=1(B)sinkx+coskx>1(C)sinkx+coskx<1(D)sinkx+coskx的值不确定2.设椭圆x2a2+y2b2=1(a>b>0)的一个焦点为F,点P在y轴上,直线PF交椭圆于点M、N,PM=λ1MF,PN=λ2NF.则实数λ1+λ2=().(A)-2b2a2(B)-b2a2(C)-2a2b2(D)-a2b23.指数函数y=ax和对数函数y=logax(其中a>0,a≠1)的图像分别为C1、C2,点M在曲线C1上,线段OM(O为坐标原点)交曲线C1于另一点N.若曲线C2上存在一点P,且点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N横坐标的2倍…  相似文献   

19.
在学习解析几何时,常常会遇到直线与线段相交时求参数范围的问题,这里先介绍一个简单结论,从而简捷地解决此类问题.定理 若直线l:Ax By C=0(A2 B2≠0)与P1(x1,y1),P2(x2,y2)为端点的线段相交,则(Ax1 By1 C)(Ax2 By2 C)≤0.证 设直线l与线段P1P2相交于点P(x,y),不妨设P不重合于P2,点P内分线段P1P2—的比为λ,则λ≥0,由定比分点坐标公式,得x=x1 λx21 λ, y=y1 λy21 λ.∵ 点P(x,y)在直线l上,∴ A·x1 λx21 λ B·y1 λy21 λ C=0,整理,得 Ax1 By1 C=-λ(Ax2 By2 C).…  相似文献   

20.
证明几何题 ,我们一般常采用综合分析法 ,这确是行之有效的重要方法 ,但在证明过程中有时却过于复杂 ,不易理解 .而用解析法来证明就可以简化证明 ,且思路清晰易于理解 .下面利用线段的定比分点公式来解决一些几何题目 .线段定比分点公式 :用点的径向量表示 :对于有向线段P1P2 (P1≠P2 ) ,如果点P满足P1P=λ·PP2 (λ≠ -1 ) ,则称点P是把有向线段P1P2 分成定比为λ的分点 ,O是空间任意一点 ,则OP =OP1+λOP21 +λ .例 1 如图 1 ,设△ABC的三个顶点为A、B、C ,同一平面上有一点P ,今取Q、R、S ,使PC∶CQ …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号