首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical study of NO adsorbed on the surface of TiO_2(110) cluster model   总被引:1,自引:0,他引:1  
INTRODUCTION The adsorption of gas molecules on metals,metal oxides or alloys had been researched widelyto find a solution for the problem of air pollution(Davies and Craig Jr., 2003; Yanagisawa, 1996;Tominaga et al., 1999). NO could be adsorbed onthe particle surface and desorbed as N2 from thesurface by temperature programmed desorption(TPD) (Davies and Craig Jr., 2003; Yanagisawa,1996). The calculation of cluster model was estab-lished with molecular orbital (MO) theory (Ry…  相似文献   

2.
The chemisorption properties of N18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N18O decomposed and recombined during the process of N2 desorption after N18O was exposed. Analysis of the stable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster model showed that there was clear preference for the Ti-NO orientation.  相似文献   

3.
TiO2 nanoparticles(NPs)were prepared via the hydrothermal route of TiO2 xerogel in nitric acid, hydrochloric acid and acetic acid. The physico-chemical properties of the powders were characterized by X-ray diffraction(XRD)and N2 adsorption desorption techniques. The effects of the different acids on the structure(crystal phase)and texture(primary particle size and porosity)of the TiO2 powders were explored. Results indicated that acetic acid facilitated the formation and stability of pure anatase phase. On the other hand, nitric acid and hydrochloric acid led to the transformation from anatase to rutile. The catalyst synthesized via the hydrothermal route of TiO2 xerogel in the low concentration hydrochloric acid solution(Ti-HCl-0.15)had the highest photocatalytic activity than the catalysts obtained in the other two acid solutions. The effects of the different acids were discussed in terms of acid strength, chelating effect and the thermal stability of the adsorbed acidic anions.  相似文献   

4.
A novel metallo-organic chemical vapor deposition (MOCVD) technique has been applied to the preparation of the photocatalytic titanium dioxide supported on activated carbon. The effects of various condition parameters such as carrier gas flow rate, source temperature and deposition temperature on the deposition rate were investigated. The maximum deposition rate of 8.2 mg/(g·h) was obtained under conditions of carrier gas flow rate of 400 ml/min, source temperature of 423 K and deposition temperature of 913 K. The deposition rate followed Arrhenius behavior at temperature of 753 K to 913 K, corresponding to activation energy E a of 51.09 kJ/mol. TiO2 existed only in anatase phase when the deposition temperature was 773 K to 973 K. With increase of deposition temperature from 1073 K to 1273 K, the rutile content sharply increased from 7% to 70%. It was found that a deposition temperature of 773 K and a higher source temperature of 448 K resulted in finely dispersed TiO2 particles, which were mainly in the range of 10–20 nm. Project (No. 90206007) supported by the National Natural Science Foundation of China  相似文献   

5.
An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nanobelts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m(BiOBr)/m(TiO2) were discussed in order to get the best photocatalytic activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism of photocatalytic enhancement was proposed.  相似文献   

6.
A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltammetry(CV). The methyl orange(MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs substrate was synthesized by an electrochemical method to obtain large specific surface area and high space utilization. The phase structure, electrode surface morphology and electrochemical properties of electrodes were characterized by XRD, SEM and electrochemical technology, respectively. The results showed that praseodymium oxide was successfully doped into the SnO2-Sb film by CV method. Due to the doped Pr, the oxygen evolution potential increased from 2.25 V to 2.40 V. The degradation of MO was investigated by UV-vis. The C t /C 0 (φ) was studied as a function to obtain the optimal parameters, such as the amount of doped Pr, current density and initial dye concentration. In addition, the degradation process followed pseudo-first-order reaction kinetics and the rate constant was 0.099 3 min-1. The result indicated that the introduction of Pr reduced the formation of oxygen vacancies or enhanced the formation of adsorbed hydroxyl radical groups on the surface, thus leading to better activity and stability.  相似文献   

7.
Elemental mercury has become a global concern because of its significant impact on human health and the ecosystem. A lot of effort has been put towards the removal of elemental mercury from the 2H-MoS2 (prismatic structure of MoS2). However, the mechanism of 1T-MoS2 (polytype structure of MoS2) in Hg0 capture remains unexplored. In this study, density functional theory (DFT) was adopted to investigate the adsorption mechanism of Hg on a 1T-MoS2 monolayer. The different possible adsorption positions on the 1T-MoS2 were examined. For different adsorption configurations, the changes in electronic property were also studied to understand the adsorption process. The results elucidated that chemisorption dominates the adsorption between Hg0 atoms and the 1T-MoS2. It was found that the TMo (on top of the Mo atom) position is the strongest adsorption configuration among all the possible adsorption positions. The adsorption of Hg0 atoms on the 1T-MoS2 monolayer is influenced by adjacent S and Mo atoms. The adsorbate Hg0 atom is found being oxidized on the TMo position of the 1T-MoS2 with an adsorption energy of ?1.091 eV. From the partial density of states (PDOS) analysis of the atoms, the strong interaction between Hg0 and the 1T-MoS2 surface is caused by the significant overlap among the d orbitals of the mercury atom and the s orbital of the S atom and p and d orbitals of the Mo atom.  相似文献   

8.
Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic and microscopic observation results show that squamae, cracks, steps and wedges exist on the surface when the samples were rolled at temperatures around Ty. However, a smooth and fiat surface appears when the samples were rolled at temperatures near ( Tx - 50) K. These results indicate that the mode of deformation in the supercooled liquid region is a partially homogeneous flow at a temperature around T9, and a fully homogeneous one at temperatures near ( Tx - 50) K. According to the results, it is more feasible to roll the amorphous alloys at temperatures near ( Tx - 50) K to obtain parts with smooth and fiat surface.  相似文献   

9.
Well-cubic perovskite lanthanum aluminate (LaAlO3) film on (110) silicon substrate was fabricated by sol-gel method with corresponding inorganic salts. Lanthanum acetate and aluminum acetate glacial acetic acid solutions were prepared via ligand exchange starting from lanthanum nitrate hexahydrate and aluminum nitrate hexahydrate after being refluxed. (CH3CO)2O removed nitrates and the crystallized H2O completely, acetylacetone (AcAc) was partially bidentated with metallic ion of the metallic acetates and formed La(OAc)3−x (AcAc) x which were hydrolyzed into La(AcAc)3−x(OH) x by adding 10 ml 0.4% methyl cellulose (MCL) solution. The La(AcAc)3−x (OH) x , polymerizing and combining with MCL, formed the LaAlO3 sol precursor with heteropolymeric structure and formed film easily. The epitaxial LaAlO3 film on Si(110) substrate was crystallized after being annealed in thermal annealing furnace for 650–750 °C/30 min. The morphologies and microstructures were characterized. The refractive index of the LAO film was 1.942 to 2.007; the dielectric constant and the dissipation factors were estimated to be 23–26 and 2.1×10−4−2.4×10−4 respectively. Project (No. 2002CB613305) supported by the National Basic Research Program (973) of China  相似文献   

10.
1Introduction Oxide dilutedmagneticsemiconductors(O DMS)havedrawnmuchattentioninthelastdecadebecause thesematerialsappeartohavegreatpotentialforuse inspin dependentelectronicdevices[1].Recently,iron cobalt dopedtitaniumdioxideswithroomtemperature ferromagnetismhavebeenreported[2].Specially,the resultsofmagneticpropertiesofFexTi1-xO2(x=0.065and0.250)indicatethatferromagnetismwitha Femagneticmomentislargerthantheonereported forCo[3].ThefabricationmethodsofFe Co doped TiO2includepulsedlaser…  相似文献   

11.
In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.  相似文献   

12.
The crystal form of TiO2 is a crucial focus of research on the photocatalytic degradation of gaseous pollutants by TiO2-based composite photocatalysts. To explore the synergistic effect of mixed crystalline TiO2 on gaseous organic-pollutant photocatalytic degradation, we synthesized a series of TiO2 nanoparticles with controllable phase ratios. We explored the role of the TiO2 phase ratio on the photocatalytic activity and degradation pathway in the photodegradation of 2-propanol (IPA). We estimated the crystallite size and crystal proportions of anatase and rutile by X-ray diffraction. We used the Brunauer–Emmett–Teller method to calculate the specific surface area and Fourier transform infrared spectroscopy to characterize the surface chemistry of the samples. Our results show the photocatalytic activities of pure anatase and the sample with 8.6% rutile to be much better than those of the samples with a phase junction and pure rutile. As such, anatase is the better option for the study of photodegradation design and preparation of gas-phase organic pollutants.  相似文献   

13.
A new concept of low-cost direct air capture technology integrated with a fertilization system is proposed, as an alternative to the application of air derived CO2. A moisture swing sorbent can elevate the CO2 concentration from 400 parts per million (ppm) to several thousand ppm, and this can be used to cultivate plants. Desorption isotherms were determined and are described well by a Langmuir model. The adsorption rate constant and the desorption rate constant were gained at 25 °C, 35 °C, and 45 °C under 1000 ppm concentration of CO2. In accelerated cultivation experiments, the effects of CO2 concentration, light intensity, and spectrum on the CO2 uptake rate of the plants were investigated. A multi-bed desorption system which is capable of providing a continuous and stable CO2 supply for a greenhouse is demonstrated based on the desorption characteristic and CO2 uptake feature of plants. An energy and cost assessment for the integrated system was performed and the results indicated that minimum energy requirements and cost estimate of CO2 are 35.67 kJ/mol and 34.68 USD/t, respectively. This makes direct air capture a competitive and sustainable carbon source for agriculture.  相似文献   

14.

Objective

To evaluate the potential adjuvant effect of Agrocybe aegerita lectin (AAL), which was isolated from mushroom, against a virulent H9N2 strain in vivo and in vitro.

Methods

In trial 1, 50 BALB/c male mice (8 weeks old) were divided into five groups (n=10 each group) which received a subcutaneous injection of inactivated H9N2 (control), inactivated H9N2+0.2% (w/w) alum, inactivated H9N2+0.5 mg recombinant AAL/kg body weight (BW), inactivated H9N2+1.0 mg AAL/kg BW, and inactivated H9N2+2.5 mg AAL/kg BW, respectively, four times at 7-d intervals. In trial 2, 30 BALB/c male mice (8 weeks old) were divided into three groups (n=10 each group) which received a subcutaneous injection of inactivated H9N2 (control), inactivated H9N2+2.5 mg recombinant wild-type AAL (AAL-wt)/kg BW, and inactivated H9N2+2.5 mg carbohydrate recognition domain (CRD) mutant AAL (AAL-mutR63H)/kg BW, respectively, four times at 7-d intervals. Seven days after the final immunization, serum samples were collected from each group for analysis. Hemagglutination assay, immunogold electron microscope, lectin blotting, and co-immunoprecipitation were used to study the interaction between AAL and H9N2 in vitro.

Results

IgG, IgG1, and IgG2a antibody levels were significantly increased in the sera of mice co-immunized with inactivated H9N2 and AAL when compared to mice immunized with inactivated H9N2 alone. No significant increase of the IgG antibody level was detected in the sera of the mice co-immunized with inactivated H9N2 and AAL-mutR63H. Moreover, AAL-wt, but not mutant AAL-mutR63H, adhered to the surface of H9N2 virus. The interaction between AAL and the H9N2 virus was further demonstrated to be associated with the CRD of AAL binding to the surface glycosylated proteins, hemagglutinin and neuraminidase.

Conclusions

Our findings indicated that AAL could be a safe and effective adjuvant capable of boosting humoral immunity against H9N2 viruses in mice through its interaction with the viral surface glycosylated proteins, hemagglutinin and neuraminidase.
  相似文献   

15.
TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron micros- copy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m^2/g and 148 m^2/g for samples deposited at 100 ℃ and 200℃ (using ACFI700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds.  相似文献   

16.
Systematic studies of the transport properties of La0.67Ca0.33Mn1?xFe x O3 (x=0–0.3) systems showed that with increasing Fe-doping contentx the resistance increases and the insulator-metal transition temperature moves to lower temperature. For small doping content, the transport property satisfies metal transport behavior below the transition temperature, and above the transition temperature it satisfies the small polaron model. This behavior can be explained by Fe3+ doping, which easily forms Fe3+?O2??Mn4+ channel, suppressing the double exchange Mn3+?O2??Mn4+ channel and enhancing the spin scattering of Mn ions induced by antiferromagnetic clusters of Fe ions.  相似文献   

17.
Diesel emission fluid (DEF) soaking and urea deposits on selective catalytic reduction (SCR) catalysts are critical issues for real diesel engine NH3-SCR systems. To investigate the impact of DEF soaking and urea deposits on SCR catalyst performance, fresh Cu-zeolite catalyst samples were drilled from a full-size SCR catalyst. Those samples were impregnated with DEF solutions and subsequently hydrothermally treated to simulate DEF soaking and urea deposits on real SCR catalysts during diesel engine operations. Their SCR performance was then evaluated in a flow reactor with a four-step test protocol. Test results show that the DEF soaking leached some Cu from the SCR catalysts and slightly reduced their Cu loadings. The loss of Cu and associated metal sites on the catalysts weakened their catalytic oxidation abilities and caused lower NO/NH3 oxidation and lower high-temperature N2O selectivity. Lower Cu loading also made the catalysts less active to the decomposition of surface ammonium nitrates and decreased low-temperature N2O selectivity. Cu loss during DEF impregnation released more acid sites on the surface of the catalysts and increased their acidities, and more NH3 was able to be adsorbed and involved in SCR reactions at medium and high temperatures. Due to lower NH3 oxidation and higher NH3 storage, the DEF-impregnated SCR catalyst samples showed higher NO x conversion above 400 °C compared with the non-soaked one. The negative impact of urea deposits during DEF impregnation was not clearly observed, because the high-temperature hydrothermal treatment helped to remove the urea deposits.  相似文献   

18.
Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 °C) because of the cooperative effect of Fe2O3 and the surface nitrogen species.  相似文献   

19.
TiO2/ ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( 〈 200 ℃). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal analyzer, and dark m-line spectroscopy were used with the method of scattering-detection to investigate optical and structural properties. High optical quality waveguide film was obtained. The propagation loss of film was 0.569 dB/cm at a wavelength of 632.8 nm.  相似文献   

20.
A part of the heavy metals in estuary and coastal zone occurs naturally in the environment; the other part is due to human activity; so the directly measured concentration of heavy metal does not automatically indicate anthropogenic enrichment. Fe2O3 was used in this study as conservative tracer to distinguish natural components from anthropogenic components of heavy metal sediment concentration in the Zhujiang estuary. Compared with clay and Al2O3, Fe2O3 is more suitable as reference element. The final results showed that two zones in the Zhujiang estuary were seriously contaminated by heavy metals. One nearby the Humen mouth; the other around the west coast of the estuary. The horizontal distribution of heavy metals indicates that Zn, Ni and Cu have wider contaminating areas than TiO2, V and Cr in the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号