首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
题目如果复数z_1、z_2、z_3满足|z_1|=|z_2|=|z_3|=1,且z_1 z_2 z_3=0。证明z_1、z2、z3所对应的点是内接于单位圆的一个正三角形的三个顶点。分析:由|z_1|=|z_2|=|z_3|=1,知复数z_1、z_2、z_3所对应的点都在单位圆周上。因此关键是证明z_1、z_2、z_3所对应的点构成正三角形。证明:利用复数的代数形式来证明。  相似文献   

2.
我们知道在复数中,|z|=1(?)z=1/z(z∈C),此式对有些复数题解法化较简便现举例说明如下: 例1 如果三个复数名z_1、z_2、z_3适合|z_1|=|z_2|=|z_3|=1,求证:|z_1 z_2 z_3|=|(1/z_1) (1/z_2) (1/z_3)|.  相似文献   

3.
八五年高考理科数学第五题: 设o为复平面的原点,z_1和z_2为复平面内的两个动点。并且满足: (1)z_1和z_2所对应的复数的辐角分别为定值θ和-θ(0<θ<π/2); (2)△Oz_1z_2的面积为定值S。求△Oz_1z_2的重心z所对应的复数的模的最小值。解:在△Oz_1z_2中,中线|OA|≥高|OB|(如图1),  相似文献   

4.
不等式:|z_1|+|z_2|≥|z_1+z_2|在全日制十年制学校高中课本第三册中已经出现。我们把这个不等式加以推广就可得到一个复数模的不等式:|z_1|+|z_2|+……+|z_n|≥|z_1+z_2+……+z_n|,式中z_n为复数,等号当且仅当所有复数的幅角主值:  相似文献   

5.
在《全日制十年制学校中学数学教学大纲》中,要求“理解复数运算的几何意义”。利用复数运算证明几何题,不仅有助于数学知识的综合运用,而且有助于加深理解复数的几何意义。本文就平面几何中常见的几种类型,给出复数证法。一、预备知识 1、平面上两点之间的距离设z_1=x_1+iy,z_2=x_2+iy_2是平面上任意两点,则z_1、z_2的距离 d=|z_2-z_1|=((x_2-x_1)~2+(y_2-y_1)~2)~(1/2) 或d=(|z_2-z_1|~2)~(1/2)=((z_2-z_1)(z_2-z_1))~(1/2) 2、复数有理运算的几何意义。①加减法——平移变换  相似文献   

6.
有些数学题.如果直接从条件到结论用定势思维去探求解题途径比较困难时,可以根据题设及其特点,构造出复数,从而得到独特的解题方法,使问题化难为易.例1 求函数 f(x)=(9 x~2)~(1/2) ((4 (5-x~2)))~(1/2)的值域.分析:可将根式的问题,通过构造复数化成模的有关问题.解:构造复数 z_1=3 xi,z_2=2 (5-x)i则 f(x)=(?)|z_1| |z_2|≥|z_1 z_2|=|3 xi 2 (5-x)i|  相似文献   

7.
若复数z1,z2,z3满足z1 z2 z3=0且|z1|=|z2|=|z3|=1,则复平面内以z1,z2,z3所对应的点为顶点的三角形是内接于单位圆的正三角形.  相似文献   

8.
由复数加法法则可知,两个复数相加的几何意义是把加数中的一个复数对应的点进行有规律的平移,平移后得到的点对应的复数就是其和。利用这一观点解决有关复数问题更简捷。 依据:z=x+yi,z_0_a+bi(x,y,a,b∈R)由复数加法法则知z+z_0=(x+a)+(y+b)i 结论:复数z对应复平面内的点z,点z+(a+bi)是把点z沿实轴方向移动|a|个单位(a>0时向右移动;a<0时向左移动)再沿虚轴方向移动,61个单位(b>0时向上移动,b<0时向下移动)得到的。 本文称这种方法为平移法,下而举例说明这种方法的应用。 例1.如果复数z满足|z+i|+|z-i|=2,求|z+1+i|的最小值。 解:由复数的几何意义知复数z为以A(0,-1),B(0,1)为端点的线段AB,而z+1+i表线段AB向右平移一个单位,再向上平移一个单位得到的线段A′B′,(如图所示),而|z+1+i|最小值表线段A′B′上的点到原点的最短距离,即|z+1+i|_(min)=|OA′|=1。  相似文献   

9.
题 已知复数z_1,z_2满足|z_1|=|z_2|=1,且z_1/z_2 z_1/z_2=0,求|z_1~2-z_2~2|的值.  相似文献   

10.
我们们先推导两个有公共起点且夹角为θ的复向量AB、AC间的一个公式。在复平面内,设向量AB、AC所表示的复数分別为,且点A、B、C所表示的复数分另为z、z_B、z_C, 又设|AC|=λ|AB|(λ>0)。则根据复数减法、乘法的几何意义有:  相似文献   

11.
在统编十年制高中数学第三册复习题三中有一道习题是:求证三个互不相等的复数z_1、z_2、z_3组成一等边三角形的三个顶点的充要条件是它们适合等式:z_1~2+z_2~2+z_3~2=z_1z_2+z_2z_3+z_3z_1.本文称为命题1(证略). 由命题1可以得到下面的: 命题2 若复系数三次方程x~3+ax~2+bx+c=0  相似文献   

12.
文[1]研究了两个模相等的复数的差的辐角与各复数的辐角的关系,读后受益匪浅。然而又感到有两点缺憾:第一,文中的定理是关于辐角正切值的结果,无法由此直接求出辐角;第二、六条推论虽作了补充,但由于分类复杂,不便记忆,可操作性不强,本文试图弥补这两点缺憾.为此先研究模相等的两复数的和的辐角。 定理 设|z_1|=|z_2|=r>0,argz_1=日_1,argz_2=6)2,Arg(z_1 z_2)=",则  相似文献   

13.
若设两个非零复数为该公式简单易证,下面谈一谈该公式的一些应用:一、求解复数的辐角问题公式(·)可变形为,用上述两种变形形式求解辐角问题异常方便.的辐角主解设由公式(1)例2若虚数z_1,z_2满足解设例3若复数Z_1,Z_2满足此时显然成立例4已知复数Z满足辐角为o,求证:(k为整数).由于Z的辐角为O.则1/z的辐角为亦即为整数)例5已知在复平面上三个不共线的点所对应的复数为z_1、z_2、z_3其中z_1的辐角主值为0;z_2、z_3的辐角主值是α、β,且z_1 z_2 z_3=0,为何值时,cos(β—α)有最大值?解由题知当m=2时,2m(4-m)取得最大…  相似文献   

14.
复数集中有关|z_1 z_2|与|z_1-z_2|的问题,学生解题时往往不善于用其几何意义,颇感困惑。若能用其几何意义并与余弦定理联系起来,解题就能明快简捷多了。 设z_1、z_2∈C,z_1、z_2在复平面内对应点为A、B,Z_1 Z_2对应点为C(图一),z_1、z_2辐角主值分别为α、β,则∠AOB=|α-β|或2π-|α-β|,∠OAC=π-|α-β|或|α-  相似文献   

15.
本文举例介绍解复数问题时常用的策略与技巧.1.取值估算【例1】 当23相似文献   

16.
复数     
课时一 复数的概念及其向量表示 基础篇 诊断练习一、填空题1.正整数集 N*、自然数集 N、整数集 Z、有理数集Q、实数集 R、复数集 C之间有包含关系 .2 .复数 z =a +bi( a、b∈ R) ,当且仅当时 ,z为实数 ;当且仅当时 ,z为虚数 ;当且仅当时 ,z为纯虚数 .3.如果 a、b、c、d∈ R,那么 a +bi =c +di .两个复数不全为实数时 ,不能比较它们的大小 ,只能为 .4 .建立了复平面后 ,复数 z =a +bi( a,b∈ R)与复平面上的点 Z( a,b) ,与复平面内以原点 O为起点 ,点 Z( a,b)为终点的向量 OZ .向量 OZ的长度叫做 ,记为 |z|,故有 |z|=|OZ|=.二、选…  相似文献   

17.
复数的几何表示和复数运算的几何意义,揭示了复数和平面上图形的对应关系;复数模的大小则指明复数和不等式及最值关系密切;复数的三角表示则又沟通了复数与三角函数之间的内在联系。因此复数知识在解决数学问题中发挥了广泛的作用。一、复数在求最值中的应用功能复数模的范围可用不等式表示,而求最值则要借助于不等式,由此运用复数的这一性质又开辟了一条求最值的新思路。例1已知复数z1、z2满足关系式|z1|2 |z2|2=1,设z=z1·z2,若z=x yi(x、y∈R),求x y的最大值和最小值。解:∵|z1|2 |z2|2=1,而|z|=|z1|·|z2|≤|z1|2…  相似文献   

18.
数学中的许多问题,常可通过变量代换,使之化繁就简、化难为易。复变量代换就是常用的一种变量代换。用复变量作代换,应熟悉复数运算的有关性质和法则,公式和定理,常用的有复数相等的充要条件;复数三角形式的乘法和除法法则;棣美弗定理;复数模的几何意义及复数模的和的重要不等式:|z_1|+|z_2|+…+|z_n|≥|z_1+z_2+…+z_n|,等号当且仅当所有n个复数z_1,z_2、…、z_n的幅角的主值arg z_1=arg z_2=…=arg z_n时成立(假定z_1  相似文献   

19.
每期一题     
题:若:a、b、c为正数,试求函数y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)的极小值。解法一复数法运用代数中学过的复数模不等式 |z_1|+|z_2|≥|z_1+z_2|。设 z_1=x+ai x_2=(c-x)+bi ∴|z_1|=(x~2+a~2)~(1/2) |z_2|=((c-x)~2+b~2)~(1/2) ∵|z_1|+|z_2|≥|z_1+z_2| ∴y=|z_1|+|z_2|≥|z_1+z_2| =|x+ai+c-x+bi| =|c+(a+b)i|=(c~2+(a+b)~2)~(1/2) ∴y_min=(c~2+(a+b)~2)~(1/2)。解法二代数法运用不等式(x_1~2+y_1~2)~(1/2)+(x_2~2+y_2~2)~(1/2)≥((x_1+x_2)~2+(y_1+y_2)~2)~(1/2)其中等号仅当x_1/x_2=y_1/y_2时成立。∴y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)  相似文献   

20.
1994年全国高中数学联合竞赛第二试第一题:x的二次方程x~2 z_1x z_2 m=0中,z_1,z_2,m均是复数,且z_1~2-4z_2=16 20i,设这个方程的两个根α,β满足|α-β|=2(7~(1/2)),求|m|的最大值和最小值 。本刊94年第12期介绍的一种解法外,还有多种不同的解法,现给出如下:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号