首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
错在哪里     
1.湖北咸丰李永贵来稿题:过点B(0,-b)作椭圆x~2/a~2 y~2/b~2=1(a>b>0)的弦;求这些弦的最大值。解设M(x_0,y_0)为椭圆上任一点,由两点间的距离公式可得 |BM|~2=(x_0~2-0)~2 (y_0 b)~2=x_0~2 y_0~2 2by_0 b~2, ①因点M(x_0,y_0)在椭圆上,∴x_0~2=(a~2b~2-a~2y_0~2)/b~2,代入  相似文献   

2.
本文给出用极值求两图形间的距离的方法。一、求点到直线的离距。 1.在平面上,求点A(x_1,y_1)到直线l:y=kx+b的距离d。解:在直线l上任取一点p(x,y),则 |AP|=((x-x_1)~2+(y-y_1)~2)~(1/2) =((x-x_1)~2+(kx+b-y_1)~2)~(1/2) =((1+k~2)x~2-2(x_1+ky_1-kb)x+x_1~2+(y_1-b)~2)~(1/2) =((1+k~2)(x-(x_1+ky_1-kb)/(1+k~2))~2+(kx_1-y_1+b)~2/(1+k~2))~(1/2)当x=(x_1+ky_1-kb)/(1+k~2)时,|AP|取极小值d。所以d=|AP|极小=|kx_1-y_1+b|/(1+k~2)~(1/2)=0给出,则k=-A/B,b=-C/B,于是 d=|-(A/B)x_1-y_1-C/B|/(1+(A~2/B~2))~(1/2) =|Ax_1+By_1+C|/(A~2+B~2)~(1/2)  相似文献   

3.
学过《平面解析几何》的同学都知道:过椭圆x~2/a~2+y~2/b~2=1上一点P(x_0,y_0)的切线的方程是(x_0x)/a~2+(y_0y)/b~2=1①因(x_0~2)/a~2+(y_0~2)/b~2=1,又可写成(x_0x)/a~2+(y_0y)/b~2=(x_0~2)/a~2=(y_0~2)/b~2②, 一些细心的同学会问:当P(x_0,y_0)点不在椭圆上时,方程①或②的几何意义是什么呢?过椭圆外定点的椭圆的切线能否用方程①或②来表示呢?而少数粗心的同学在解题时没考虑点P的位置,直接套用方程①或②导致错误的情况时有发生。因此,有必要引导学生利用熟知的原理和方法,进行一番较深入的探讨。下面我们给出:  相似文献   

4.
和面积在平面几何中的地位相当,体积在立体几何中也有一番妙用。举例说明如下。一利用体积求点到平面的距离例1 长方体ABCD-A_1B_1C_1D_1中,AB=a,BC=b,BB_1=c,求顶点B_1到截面A_1BC_1的距离。解由题设,长方体AC_1中,AB=a,BC=b,BB_1=c, ∴A_1B=(a~2+c~2)~(1/2),BC_1=(b~2+c~2)~(1/2),A_1C_1=(a~2+b~2)~(1/2) 故cos∠BA_1C_1=((A_1B)~2+(A_1C_1)~2-(BC_1)~2)/(2A_1B·A_1C_1)=(a~2+c~2+a~2+b~2-b~2-c~2)/(2((a~2+c~2)~(1/2))·(a~2+b~2)~(1/2))=(a~2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))sin∠BA_1C_1=(1-(a~4)/(a~2+c~2)(a~2+b~2))~(1/2)=(a~2b~2+b~2c~2+c~2a~2)~(1/2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))  相似文献   

5.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

6.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

7.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

8.
众所皆知,增设性构作给某些数学问题的求解带来化繁为简的生机,但不恰当的增设性构作给某些数学问题的解答蒙上消极被动的阴影,未必被众人所晓,下面对此进行剖析。一只图形式忽视本质增设性构作常诞生于审析问题的形式结构之中,初步产生后将继续结合问题解答的需要逐步修正完善,千万可可忽视,修正完善过程。例1 求函数f(x)=x+(1-x~2)~(1/2)的值域。错解:设x=sinθ,则y=sinθ+cosθ=(2sin(θ+σ/4))~(1/2) 函数f(x)的值域是[-2~(1/2),2~(1/2)]。剖析:这里仅注意f(x)的定义域与三角函数值域之关系,选用三角代换,而忽视了x=sinθ时,(1-x~2)~(1/2)=cosθ≥0并非对任意实数θ恒成立。应将增设修正为x=sinθ,θ∈[-1/2π,1/2π],得出正确结果[-1,2~(1/2)]。例2 求函数y=(x~2-8x+17)~(1/2)+(x~2+4)~(1/2)的最小值。错解:∵ y=((x-4)~2+1)~(1/2)+((x~2+2~2)~(1/2) ∴设z_1=(x-4)+i,z_2=-x-2i, 则y=|z_1|+|z_2|≥|z_1+z_2|=(17)~(1/2),y的最小值是(17)~(1/2)。  相似文献   

9.
1986年献礼     
1.若(a b)/(a-b)=(b c)/(b-c)=(c a)/(c-a) 求证:|a~(1986)|=|b~(1986)|=|c~(1986)| 【证明】:由条件(*)知a、b、c两两不等,且abc≠0,对(*)式用合分比定理得a/b=b/c=c/a=x≠1从而c=ax,b=cx=ax~2,a=bx=ax~3 ∴ x~3=1,可见x是1的立方虚根w或w~2。∴ c=aw,b=xw~2或c=aw~2,b=aw~4=aw, 于是|a~(1986)|=|(aw~2)~(1986)|=|(aw)~(1986)| 故|a~(1986)|=|b~(1986)|=|c~(1986)| 2.证明:是合数【证明】:=10~(1986)-1/9=(10~(993))~2-1/9=((10~(993) 1)(10~(993)-1))/9  相似文献   

10.
我们知道,椭圆(x-h)~2/a~2+(y-k)~2/b~2=1内部(外部)的点(x_1,y_1)满足不等式(x-k)~2/a~1+(y-k)~2/b~2<1(>1)。利用这一性质,可较为方便地求解一类无理不等式,兹举例说明一般方法如下。例1.解不等式:(x~2+4x+5)~(1/2)+(x~2-4x+5)~(1/2)>5。  相似文献   

11.
本刊1983年第3期“数学问题”栏里有这样一道题:“方程x~3+y~3-3xy+1=0,的图形是什么?作出此图形。”仔细思考,耐人寻味。如果稍作些考察、对比、联想,我们可以发现问题中方程等号左边式子的形式特征酷似我们在初中曾经接触过的问题:“因式分解a~3+b~3+c~3-3abc”。 a~3+b~3+c~3-3abc=(a+b+c)(a~2+b~2+c~2-ab-bc-ca) ……(A)=1/2(a+b+c)[(a-b)~2+(b-c)~2  相似文献   

12.
例1 求点 P(4,0)与抛物线 y~2=2x 上的点的距离的最小值。解:设抛物线上一点 Q(x_1,y_1),则y_1~2=2x_1,|PQ|=(x_1-4)~2~(1/2) y_1~2=(x_1~2-6x_1 16)~(1/2)。∵被开方数二次项的系数为正,∴当 x=3时,(x_1~2-6x_1 16)极小值:=7,|PQ|极小值=7~(1/2)。例2 设 A、B 是椭圆 x~2/a~2 y~2/b~2=1的相邻二顶点,试在(?)上求一点 P,使四边形PAOB 面积为最大。解:设(?)上一点 P(acosθ,bsinθ),则S(?)PAOB=S△AOB S△PAB  相似文献   

13.
题:“直线y=mx+b(|m|<1)与圆x~2+y~2=1交于P、Q,与双曲线x~2-y~2=1交于R、S,如果P、Q把线段RS三等分,求m、b。”见到一本公开发行的资料中的解答是这样的: 解:P、Q的横坐标x_1、x_2是方程x~2+(mx+b)~2=1的两个根, ∴有x_1+x_2=-2mb/1+m~2 ① x_1·x_2=b~2-1=1+m~2 ② R、S的横坐标x_1′、x_2′是方程x~2-(mx+b)~2=1的两个根,  相似文献   

14.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

15.
错在哪里     
解析几何中的一个常见题“P是椭圆(x~2)/(a~2) (y~2)/(b~2)=1上一点,F_1、F_2是焦点,若∠F_1PF_2=α,求△PF_1F_2的面积”。下面给出二种解法. 解法一:S_△=1/2|PF_1|·|PF_2|sinα,|F_1F_2|~2=|PF_1|~2 |PF_2|~2-2|FF_1||PF_2|cosα=(|PF_1| |PF_2|)~2-2|PF_1|·|PF_2|-2|PF_1|·|PF_2|cosα=4a~2-2|PF_1|·|PF_2|(1 cosα)=4c~2, ∴|PF_1|·|PF_2|=(4a~2-4c~2)/(2(1 cosα))=(2b~2)/(1 cosα)。  相似文献   

16.
将平面上一点P(x_1,y_1),移到新的位置P'(x_1,y_1'),使y_1'=ky_1。这种变换叫做点P向X轴均匀压缩。常数k≠0叫做压缩系数。本文下面取0b>0),可得出椭圆x~2/a~2+y~2/b~2=1。证明如下。设P(x,y)是圆上任意一点,经压缩变换后的对应点是P'(x',y'),则有x'=x,y'=ky=b/a y,由此得y=a/b y',代入x~2+y~2=a~2,得x'~2+a~2/b~2 y'~2=a~2,于是有x'~2/a~2+y'~2/b~2=1,  相似文献   

17.
一条直线和一条圆锥曲线的位置可以有相交、相切或相离三种情况。下面给出在给定一条直线方程和一条圆锥曲线的方程的条件下,判定它们的位置关系的定理。定理一已知直线l:Ax+By+C=0和椭圆E:x~2/a~2+y~2/b~2=1,若a~2A~2+b~2B~2>C~2则l和E相交;若a~2A~2+b~2B~2=C~2则l和E相切:若 a~2A~2+b~2B~2相似文献   

18.
性质1 如果a,b,c三个数成等比数列,则a~2b~2c~2(1/a~3 1/b~3 1/c~3)=a~3 b~3 c~3证明: ∵a,b,c成等比数列 ∴b/a=c/b 左端=a~2b~2c~2(1/a~3 1/b~3 1/c~3) =b~2c~21/a a~2c~21/b a~2b~21/c =a~3 b~3 c~3=右端性质2 如果a,b,c,d四个数成等比数列,则  相似文献   

19.
1.双曲线x~2/a~2-y~2/b~2=1右支上任一点P,到右焦点F_2的距离与右域内一点C(x_0,y_0)的距离之和为S,则S的最小值为____解:由双曲线的定义,可得: |PC|+|PF_2|=|PC|+|PF_1|-2a≥|F_1C|-2a当且仅当F_1,C,P三点共线时取等号,  相似文献   

20.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号