首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

2.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

3.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

4.
1.问题高中新教材数学第三册114页谈到导数的几何意义:曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f’(x0),切线方程为: y-y0=f'(x0)(x-x0) (*)所以可利用导数求曲线的切线方程. 问题1 点P不在曲线上如何用导数方法求过点P的切线方程? 问题2 点P在曲线上,过点P作曲线的切线只有一条吗?即方程(*)惟一吗?  相似文献   

5.
教材(人教版)对于导数的几何意义是这样叙述的:“函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0)处的切线的斜率,也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f(x0)。相应地,切线方程为y-y0=f’(x0)(x-x0)。”因此,我们有了求切线方程的方法。  相似文献   

6.
导数这个解题工具进入高中教材以后,为高中数学注入了新的活力。利用导数不但能使某些问题的求解变得轻松、简便,而且为进一步学习高等数学奠定基础。下面举例说明导数在中学阶段的常见应用,供参考。一、求曲线的切线由导数的几何意义可知,函数y=f(x)在x=x_0处的导数即为曲线y=f(x)以P(x_0,f(x_0))为切点的切线的斜率。  相似文献   

7.
函数y=f(x)在点x0处的导数的几何意义就是曲线y=f(x)在点P(x0,y0)处的切线的斜率.导数的几何意义把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.因此,用导数解决与切线有关的问题将是高考命题的一个热点.下面分类解析导数几何  相似文献   

8.
热点一:导数的几何意义 函数y=f(x)在点x0处导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,也就是说,曲线.y=f(x)在点P(x0,f(x0))处的切线的斜率是f'(x0),相应的切线方程为y-f(x0)=f'(x0)(x-x0).巧借导数几何意义联系在一起的各类综合题在近几年高考中频频出现.  相似文献   

9.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

10.
近年来,与导数有关的直线和曲线相切问题一直是高考命题的热点和难点.无论题目千变万化,处理这一问题的关键是理解y=f(χ)在点χ处的导数f’(χ0)的几何意义是曲线y=f(χ)在点(χ0,f(χ0)))处的切线的斜率.求函数y=f(χ)在点(χ0,f(χ0)))处的切线的一般步骤是:①求出函数y=f(χ)在点χ0处的导数f’(χ0),即y=f(χ)在点(χ0,f(χ0))处的切线的斜率.②由点斜式写出切线方程y-f(χ0)=f’(χ0)(χ-χ0),但要注意函数的导数不存在处的切线是与χ轴垂直的直线.例1已知函数f(χ)=χ3+bχ2+cχ+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6χ-y+7=0,求函数y=f(χ)的解析式.  相似文献   

11.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

12.
导数的应用     
导数的应用在近几年高考中是必考内容之一,导数的应用主要体现在以下几个方面: 求曲线的切线方程;讨论函数的单调性和极值;证明等式或不等式.一、在点P(x0,f(x0))处的切线的斜率,也就是说,曲线y=f(x)在点P(x0,  相似文献   

13.
正导数的几何意义就是曲线在该点处的切线斜率,下面笔者结合近几年高考例析导数的几何意义的多维应用.维度1抓住切点究两线题1(2013·天津文19选摘)已知函数f(x)=4x3+3x2-6x,求曲线y=f(x)在点(0,f(0))处的切线方程.  相似文献   

14.
<正>函数f(x)在x=x0处的导数f'(x0)的几何意义就是函数f(x)的图象在x=x0处的切线的斜率,对凹曲线,其各点处的切线都在曲线下方.利用这个几何特性,我们可以根据不等式构造函数,利用切线法证明不等式,本文举例说明.例1正实数a,b满足a+b=1.证明:a2/(a+1)+b2/(b+1)≥13.证明构造函数f(x)=x2/(x+1),则  相似文献   

15.
一、导数的几何意义 函数y=f(x)在点P(x0,y0)处的导数f'(x0)表示函数y—f(x)在x=x0处的瞬时变化率,导数f’(x0)的几何意义就是函数y=f(x)在P(x0,y0)处的切线的斜率,其切线方程为y—y0=f’(x0)(x—x0)。  相似文献   

16.
函数y=f(x)在点x0处导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.  相似文献   

17.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

18.
函数y=f(x)在点x0处的导数f′(x0)的几何意义,表示曲线y=f(x)在点x0处的切线的斜率,本文运用其结论及切线、法线、切线射影和法线射影的概念来求作圆锥曲线的切线。  相似文献   

19.
函数切线问题是高考热点之一,导数与函数的切线有缘,因为f’(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率。因此,利用导数求解函数问题,是新课标高考重点考查内容。在这类问题中,导数所肩负的任务是求切线的斜率,考查函数的思想方法和解析几何的基本思想方法,真正体现出函数、导数既是研究的对象又是研究的工具。下面举例说明。一、求曲线的切线方程例1(2012年广东卷·理12)曲线y=x3-x+3在点(1,3)处的切线方程为<sub><sub><sub>。  相似文献   

20.
<正>在近几年的高考中,对导数应用的考察频频出现,应引起我们的重视,下面从三个角度谈一下导数的应用:一、利用导数研究方程根的分布解决此种题型的方法是根据题意构造函数,画出草图,研究极值点,寻找解题途径。+例:已知函数f(x)=x3-x.(1)求曲线y=f(x)在点M(t,f(t))处的切线方程;(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号