首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

2.
变量代换是解数学题的一种重要策略 ,其中三角代换更是有着广泛而灵活的应用。它能使问题得到巧妙的转化 ,起到化繁为简、化难为易的作用。若运用得法 ,往往能收到事半功倍的效果。1 求最值例 1 已知 x21 6+y29=1 ,求u =x2 +2xy +y2 的最值 ,及相应的x ,y的值。解 据已知 ,可令x =4cosθ,y =3sinθ(θ∈R) ,则u =1 6cos2 θ +2 4sinθcosθ+9sin2 θ=72 cos2θ+1 2sin2θ +2 52 =2 52 sin( 2θ +φ) +2 52 ,其中cosφ =2 42 5 ,sinφ =72 5 ,且 0 <φ <π2 。由此可得 ,cos φ2 =721 0 ,sin φ2 =21 0 。当sin( 2θ +φ) =1时 ,取 2θ+…  相似文献   

3.
三角代换法是代数式化简、变形和求值中常用的方法之一 .在使用此方法求函数的值域或最值时 ,容易出现错误 .请先看全国著名一线教师编著的《中学数理化一题多解系列丛书——高中数学卷》(东北师范大学出版社出版 )上一个题目及其解答 :求函数 y =x 1 - x2的最大、最小值 .解 :解法 1 :把函数变形为 y - x =1 - x2 1即 (y - x) 2 =1 - x2 22 x2 - 2 yx y2 - 1 =0 ,方程有实根Δ =4 y2 - 8(y2 - 1 ) =8- 4y2≥ 0y2≤ 2 ,所以 - 2≤ y≤ 2函数的最大值为 ymax =2 ,最小值 ymin =- 2 .解法 2 :设 x =sinθ (- π2 ≤θ≤ π2 ) ,则y =sinθ…  相似文献   

4.
一、忽视条件中隐含条件致误例1已知3x2 2y2=6x,求x2 y2最大值.错解:由已知得y2=3x-32x2,代入,得x2 y2=x2 3x-32x2=-12(x-3)2 29,故当x=3时,x2 y2取最大值为29.剖析:由y2=3x-32x2≥0,得0≤x≤2,也就是说x=3是取不到的.原因是忽视条件中x的隐含条件是0≤x≤2.正解:由已知得y2=3x-32x2,代入,得x2 y2=x2 3x-32x2=-12(x-3)2 29,又由y2=3x-32x2≥0,得0≤x≤2.故当x=2时,x2 y2取最大值为4.二、运用判别式而致误例2求函数y=x $5-x2的最值.错解:移项平方整理,得2x2-2yx (y2-5)=0.由Δ≥0,即4y2=8(y2-5)≥0.得-$10≤y≤$10.所以ymin=-$10,ymax=$10.剖…  相似文献   

5.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

6.
对于求形如函数 y=x px( p >0 )型的最值问题 ,如果我们能形似联想到三角公式tanα 1tanα =2sin2α,便会考虑实施三角代换x =ptanα ,使其转化成三角函数问题 .该代换架设了这类函数三角化的一座“桥” ,从而为该问题的求解提供了又一解题新通途 .例 1 求函数 y=x2 7x2 4的最小值 .解 因为 y =x2 4 3x2 4,x2 4≥ 2 ,所以可设 x2 4 =3tanα(arctan2 33 ≤α <π2 ) ,所以 y =3tanα 3tanα =2 3sin2α.因为 π2 <2arctan2 33 ≤ 2α <π ,所以 0 相似文献   

7.
在各级各类数学竞赛中常常出现一类“恒成立”问题 .由于这类问题既有参数又有变量 ,同学们处理起来确实存在一些困难 .本文通过实例谈一谈这类问题的若干求解策略和方法 .1 分离参数法例 1 圆 x2 + ( y- 1 ) 2 =1上任意一点 P( x,y)都使不等式 x+ y+ c≥ 0成立 ,则 c的取值范围是 (  ) .( A) ( -∞ ,0 ]  ( B) [2 ,+∞ )( C) [2 - 1 ,+∞ )( D) [1 - 2 ,+∞ )(第七届全国“希望杯”竞赛培训题 )析解 分离参数得 c≥ - x- y.设 x=cosθ,y=1 + sinθ,0≤θ<2 π则 - x- y=- cosθ- 1 - sinθ=- 2 sin(θ+ π4 ) - 1 ,可见 ( - x- y) m…  相似文献   

8.
近年高中数学联赛有这样一道题 :实数x ,y满足 4x2 - 5xy +4 y2 =5,设S =x2 +y2 ,则 1Smax+1Smin的值为 .下面给出这道题的多种解法 .解法 1 由题设易知S =x2 +y2 >0 ,设x =Scosθy =Ssinθθ为参数 ,代入 4x2 - 5xy+4y2 =5,得 4Scos2 θ- 5Ssinθcosθ +4Ssinθ=5,所以sin2θ =8S - 105S ,于是有|8S - 105S |≤ 1,所以1013≤S≤ 103,所以Smax =103,Smin =103,所以 1Smax+1Smin=310 +1310 =85.解法 2 由x ,y为实数可知 :x2 +y2 ≥ 2 |xy|所以 - x2 +y22 ≤xy≤ x2 +y22 .又 4x2 - 5xy +4 y2 =5,得 5xy =4x2 +4 y2 - 5所以4x2 …  相似文献   

9.
求无理函数的最值问题 ,若用常规方法求解 ,对于有些题目来说就显得较为繁杂 ,计算量也较大 ,但若根据问题的特点巧妙地用三角代换来求解 ,则可把求无理函数的最值问题转化为求三角函数的最值问题 ,使问题得以简化 ,达到事半功倍的效果 .下面就介绍几类可用三角代换法来求无理函数最值的题型 ,仅供参考 .一、当函数的定义域为x∈ [0 ,a] (a >0 )时 ,可设x =asin2 θ ,θ∈ [0 ,π2 ]【例 1】 求函数y =1-x +x的最大值和最小值 .解 :∵函数的定义域为x∈ [0 ,1] ,∴可设x =sin2 θ ,θ∈ [0 ,π2 ]则原函数可化为y=sinθ +cosθ=2sin(θ+ π…  相似文献   

10.
题目 设 0≤θ≤π ,直线l:xcosθ +ysinθ=2和椭圆x26+y22 =1有公共点 .求 :θ的取值范围 .解法一 :(判别式法 )①cosθ=0时 ,直线l的方程为 :y =2 ,此时直线和椭圆相离 .②cosθ≠ 0时 ,直线l的方程为 :x=-ytanθ+2secθ 代入椭圆方程 :x2 +3y2 -6=0 可得 :( 3 +tan2 θ)y2 -4secθtanθ·y+4tan2 θ-2 =0由Δ =16sec2 θ·tan2 θ -4 ( 3 +tan2 θ) ( 4tan2 θ -2 ) ≥ 0 ,解得tan2 θ≤ 1,又∵ 0 ≤θ≤π ,∴θ∈ 0 ,π4∪ 3π4,π .评注 :判别式法是处理直线和圆锥曲线位置关系最常规的方法 ,思想方法较简单 ,但有时运算较复杂 .解…  相似文献   

11.
三角函数的最值问题是高考重要知识点和命题热点之一,下面就常见题型加以归纳总结,供同学们学习时参考. 类型1y=asinx+b(a≠0) 这是一类比较简单的函数.当x∈R,ymax=|a|+b,ymin=-|a|+b;当x有限制条件时,可结合正弦函数的图像求得函数的最值.例 1(1995年全国高考题)函数y=sin(x-π/6)cosx的最小值是_.解:y=sin(x-π/6)cosx =1/2[sin(2x-π/6+sin(-π/6)] =1/2sin(2x-π/6)-1/4,当sin(2x-π/6)=-1时,ymin=-3/4.  相似文献   

12.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

13.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

14.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

15.
问题 1(a)将 8- 6x- x2表示为 a- (x+b) 2的形式并由此 (或者用其他方法 )求出 x为实数时函数 f(x) =8-6x- x2 的值域 .(b)若 f(x) =12 (2 x +2 -x)且 x>0 ,求 f-1 (x) .(c)解方程组 3x+7y=1 ,2 x2 +4y=3.问题 2(a)已知 sin(A+B) =2 sin(A- B) ,证明 tan A=3tan B.并由此求出当 A∈ (- π,π)时 ,方程 sin(A+30°)= 2 sin(A- 30°)的全部解 .(b)利用变量代换 y=8x,求满足方程 64x- 5(8x) +4=0的 x的精确值 .问题 3(a)某等比数列中 ,前 n项之和为 48,前 2 n项之和为 60 ,求这个数列的前 3n项之和 .(b)表达式 2 x3 +ax2 +bx+2能被 x+2整除…  相似文献   

16.
一、随意变形例 1.函数 y=x+ 3· x- 3中 ,自变量 x的取值范围是。 (2 0 0 2年全国重点名校中考模拟题 )错解 :∵ y + x+ 3· x- 3=(x+ 3) (x- 3) =x2 - 9,∴ x2 - 9≥ 0 ,解之得 x≥ 3或 x≤ - 3。剖析 :因为变形后的函数 y=x2 - 9与变形前的函数 y=x+ 3· x- 3,它们的自变量取值范围不同 ,故出现错解。正解 :要使函数有意义 ,必须x+ 3≥ 0 ,x- 3≥ 0 ;  解之得 x≥ - 3,x≥ 3。∴自变量 x的取值范围是 x≥ 3.二、随意约分例 2 .函数 y=x2 + x- 2x2 - x- 6 中 ,自变量 x的取值范围是。 (2 0 0 2年山东省烟台市中考模拟题 )错解 :因为 y=(x…  相似文献   

17.
在解答某些不等式的问题中 ,若将题设或结论视为整体 ,通过对整体结构的调节或转化 ,可以收到简化运算、降低思维难度、缩短推证过程之功效 .下面举例说明 .一、整体代换例 1 求证 :13≤ sec2 x - tanxsec2 x + tanx≤ 3.分析 :从局部入手困难 ,不妨把整体 sec2 x - tanxsec2 x + tanx用一个元来代换 .令 y =sec2 x - tanxsec2 x + tanx=tan2 x - tanx + 1tan2 x + tanx + 1,则 ( y -1) tan2 x + ( y + 1) ytanx - 1=0 .当 y =1时 ,显然成立 ,13≤ y≤ 3;当 y≠ 1时 ,由Δ =( y + 1) 2 - 4( y - 1) 2 ≥ 0 ,解得 13≤ y≤ 3.故 13≤ sec2 y…  相似文献   

18.
求函数值域问题是高中数学的重点和难点,也是高考的热点.本文对求函数值域常用方法作些归纳,供同学们参考.一、分离常数法例1求函数y=x2-xx2-x+2的值域.解:y=x2x-2-x+x2=1-x2-2x+2,而x2-x+2=x-212+74≥47,所以0相似文献   

19.
我们知道,f(x)严格单调,f(x)=f(y)x=y(*).看起来很平常的这个性质用来巧解下面几道数学竞赛题却很有趣.1求三角函数值例1(1994年全国高中数学联赛试题)已知x,y∈[-π4,π4],a∈R,且x3+sin x-2a=0,4y3+sin ycos y+a=0,则cos(x+2y)=.分析此题的特点是入口非常小,所求的cos(x+2y)的值好象与题设条件没有什么直接关系.我们对方程组中的三个变量x,y,a的系数进行观察,利用t3+sin t在[-π2,π2]上的单调性和性质(*),就能找到一条通向胜利之路.解由于x3+sin x-2a=0,4y3+sin ycos y+a=0,将第二式乘以2与第一式相加并整理,得x3+sin x=(-2y)3+sin(-2y)…  相似文献   

20.
<正>在数学解题中,用代换法通常可以把分散的条件集中起来,或者把条件和结论联系起来,使问题化繁为简。本文将例析代换法在解题中的妙用,仅供参考。1.三角代换例1求函数y=x+(1-x2)2)(1/2)的值域。解:因为1-x2≥0,所以-1≤x≤1。设x=cosθ,则(1-x(1/2)的值域。解:因为1-x2≥0,所以-1≤x≤1。设x=cosθ,则(1-x2)2)(1/2)=sinθ(θ∈[0,π]),即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号