首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)<[f(x)]2.√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)>[f(x)]2.或{f(x)<0,g(x)≥0.将无理不等式转化为等价的代数不等式(组)来解,往往须考虑符号,运算复杂.下面介绍另一求法,其理论根据是一元连续实函数y=f(x)的根(存在)将其定义域分成的各个区间上具有保号性.此方法步骤如下:  相似文献   

2.
<正>在人教版数学选修4-5《不等式选讲》中,我们学习了不等式|f(x)|>g(x)的两种解法,掌握了解绝对值不等式的关键是去"||"符号,去绝对值的依据是"||"的定义,解绝对值不等式的常用方法是分类讨论。解法一:根据绝对值的定义,将不等式|f(x)|>g(x)去绝对值,则|f(x)|>  相似文献   

3.
本文准备谈一下关于([f(x)]~2)~(1/2)=|f(x)|的逆用,作为本刊83年第6期“(a~2)~(1/2)型根式变形教学管见”一文的补充。例1.求证|f(x)|~2=[f(x)]~2 证明:|f(x)|=([f(x)]~2)~(1/2) 两边平方,得|f(x)|~2=[f(x)]~2。例2.化简|(1+sinα)~(1/2)-(1-sinα)~(1/2)|(0≤α≤π) 解:原式=(((1+sinα)~(1/2)-(1-sinα)~(1/2))~2)~(1/2) 例3.求证|asinx+bcosx|≤(a~2+b~2)~(1/2)。证明:|asinx+bcosx|=((asinx+bcosx)~2)~(1/2)=(a~2sin~2x+b~2cos~2x+2absinxcosx)~(1/2)=((a~2+b~2)-(a~2cos~2x+b~2sin~2x-2absinxcosx)~(1/2)=(a~2+b~2-(bsinx-acosx)~2)~(1/2)≤(a~2+b~2)~(1/2)。  相似文献   

4.
方程af(x)+f(x)~(1/b)=c,一般用代换法来解。但当a、b、c为整数,a>0时,用观察法来解,显得更为简便,下面介绍这种方法。定理:如果存在平方数m≥0,使 c=am+m~(1/b)则方程af(x)+f(x)~(1/b)=c ①与方程(f(x)-m~(1/2))(f(x)+b/a+m~(1/2)=0同解②其中f(x)为x的解析式。证明:设a是方程①的解,则 af(a)+f(a)~(1/b)=am+m~(1/b)∵ f(x),m≥0,  相似文献   

5.
中学生对于已知f(x),求f(a)以及f[φ(x)](这里a是常数,φ(x)是x的函数)都比较容易掌握。笔者现对已知f[φ(x)]或含f[φ(x)]的等式,求f(x)、f(a)举出几例的解法,仅供参考。一、换元法换元法是中学数学解题中常用的方法。利用这种方法求f(a)或f(x)的表达式时,一般只要对函数中的自变量作几次代换,转化为我们所熟悉的代数式的运算,最后换成所需的变量。例1.设f(x)是定义在R上的函数,满足f(2x-1)=x~2 x 1,求f(x)。  相似文献   

6.
本文给出绝对值方程:|f(x)+g(x)|=|f(x)|+|g(x)|的简捷解法。定理,方程|f(x)+g(x)|=|f(x)|+|g(x)|与不等式f(x),g(x)≥0同解。证明:|f(x)+g(x)|=|g(x)|+|g(x)|[f(x)+g(x)]~2=[|f(x)|+|g(x)|]~2f~2(x)+2f(x)g(x)+g~2(x)=f~2(x)+2|f(x)g(x)|+g~2(x)f(x)g(x)=|f(x)g(x)|f(x)g(x)≥0。  相似文献   

7.
本文讨论一类特殊方程x=f{f[…f(x))]}的解。方程右边为单调递增函数f(x)的n重复合函数,简记为f_n(x),(n=1,2,3,…)。如方程。显然这类方程如果用通常的解法是很繁的,现在我们运用复合函数的单调性来讨论这类方程的解法。引理若y=f(u)、u=φ(x)分别为集合D_u、D_x上严格递增函数,且φ(x)的值域D_φ(?)D_u,则y=f[φ(x)]在D_x上严格递增。  相似文献   

8.
对于较复杂的分式不等式()()a f xb???<(1)然后一一求解,最后求它们的交集,但这种方法比较繁琐,而对于不等式组(1)可等价于()0,()0,()()0,()()0,()()0,()()0.g x g xf x ag x f x ag xf x bg x f x bg x???>?>???亦可等价于[f(x)?ag(x)][f(x)?bg(x)]<0,即有下列的结论:不等式()()()a f xb a b相似文献   

9.
我们知道,如果函数 f(x)、g(x)在点 x_0连续,则函数 max(f(x),g(x))在点 x_0亦连续。现在要问:如果函数 f(x)、g(x)在 x_0点可导,函数 max(f(x),g(x))是否在点 x_0亦可导呢?下面的定理1和定理2给出了判别函数 max(f(x),g(x))可导的充分条件。定理1 如果函数 f(x)、g(x)在 x_0点可导,且f(x_0)  相似文献   

10.
1997年高考试题中有这样一道选择题: 不等式组的解集是 A.{x|0相似文献   

11.
设F(x)表示sinx,cosx,tgx,ctgx之一,那么,形如F[f(x)]=F[φ(x)]的三角方程,应用“比较法”去掉三角函数的符号,利用f(x)和φ(x)列出一个关于x的比较简单的方程,比起用和差化积或别的方法去解,要简捷得多。这方法依赖于如下几条同解定理。  相似文献   

12.
关于方程f(x)=f~(-1)(x)的解法,已有好几个杂志对它进行了探讨,这里我们来进一步探讨f(x)(?)af~(-1)(ax+b)+b的解法。定理1 若f(x)在定义域上严格递增,其值域为R,a>0,则 f(x)af~(-1)(ax+b)+b与f(x)■ax+b同解。证明这里仅证f(x)>af~(-1)(ax+b)+b与f(x)>ax+b同解,  相似文献   

13.
对于题型f(x)~(1/2)>g(x),很多参考书和许多同学在解此类不等式时都认为它等价于{f(x)≥0 g(x)<0,或f(x)≥0,g(x)>0,(*) f(x)>g~2(x).这种解法对吗?我们先看下面的例子:例题:解不等式α~2-x~2~(1/2)>2x-α(α>0).解:如果按照上面的解法有:原不等式等价于  相似文献   

14.
介绍了由f(x)函数的图像到[f(x)]及{f(x)}型函数图像的一种简易作图方法,并讨论了这两类函数的一些性质,主要有:1)f(x)的奇偶性与[f(x)]、{f(x)}的奇偶性的关系;2)当f(x)连续时,[f(x)]与{f(x)}的不连续点的集合与集合∪k∈z的关系;3)当f(x)单调连续时,[f(x)]与{f(x)}在其不连续点处的性质。  相似文献   

15.
含参数的不等式|f(x,m)|>g(x)恒成立问题是不等式恒成立问题中一种常见的题型,也是各类考试的热点.其解法多变,具有一定的技巧性.解答这类问题的关键是等  相似文献   

16.
请看下面两个题目: 1.已知函数f(x)=(3x-2)/(2x+7),则f[f-1(x)]=_______; 2.若g(x)=2x3+4,则g1[g(x)]=_______. 这是一本高中数学辅导书上的两个练习题,原解答是先分别求出反函数f-1(x)和g-1(x)后,再代入复合计算得出结果,答案都是x.其实,这些计算都是多余的,无论f(x)和  相似文献   

17.
何兴忠  张满福 《数学教学研究》2004,(8):42-42,F003,F004
设一元函数 y =f(x)的定义域为A ,且在A上连续 ,如果 y =f(x)对应的不等式 f(x) >0的解集为B ,B A ,那么对于一个给定的实数x0 也可能在B内 ,也可能在B外 ,也可能恰在B对应区间的端点处 .本文对一元不等式解集对应该区间内、外及端点处的值的意义作一说明 ,并举例说明其妙用 .1 不等式解集区间内、外及端点值的意义定理 设 y =f(x)是定义域上的连续函数 ,对应的不等式是 f(x) >0 ,则有以下结论 :(1)设不等式f(x) >0的解集为B ,则x0 ∈B f(x0 ) >0 ;(2 )设 y =f(x)的定义域为A ,不等式 f(x) >0的解为B ,若x0 B(x0 不是开区间端点值…  相似文献   

18.
<正>定积分的单调性是定积分的重要性质,文[1]对定积分的单调性[1]中称为积分不等式定理)作了一些补充和说明,这对初学数学分析的学生有一定的指导作用,但笔者认为文[1]的某些说法欠妥,本文对[1]的一些问题提出不同的看法,并给出了定积分单调性定理的一般形式.为叙述方便起见,把定积分的单调性定理叙述如下:定理A([2],275页)设f(x)与g(x)在[a,b]可积,若f(x)≥g(x),则integral from a to b f(x)dx≥integral from a to b g(x)dx.运用定理A,教材[2]以例题的形式证明了如下结论  相似文献   

19.
解绝对值不等式通常都比较繁琐,本文就|f(x)|>g(x)与|f(x)|0恒成立,则不等式 |f(x)|>g(x) (1)与不等式 f(x)-g(x)>0 (2)同解。  相似文献   

20.
函数y=Asin(ωx+φ)是课本上研究的一个重点.高考命题时,也常以此函数为背景编制高考题,常见形式有下述几种: 1.单调性,单调区间例1 函数f(x)=Msin(ωx=φ)(ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(ωx+φ)在[a,b]上( ) (A)是增函数. (B)是减函数. (C)可以取得最大值M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号