首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
贵刊八三年第四期刊登了张明望同志《关于max{f(x),g(x)}的可导性》一文,从这篇文章中可以看出原作者没有注意到在条件“f(x),g(x)在点x_0可导,且f(x_0)=g(x_0)”下,必有  相似文献   

2.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

3.
微分学中,费尔马(Fermat)定理、罗尔(Rolle)定理、拉格朗日(Lagrange)定理、柯西(Cauchy)定理和泰勒(Taylor)定理因为都涉及导数在给定区间内的一个中间值,因此把这些定理叫做微分学中值定理。它们是微分学的理论基础。 费尔马定理 若函数f(x)在点x_0的某邻域U(x_0,δ)内有极值,且在点x_0可导,则f(x_0)=0,它的几何意义是如果曲线y=f(x)在点x_0处具有极值且有切线,则切线必为水平的。由费尔马定理可以导出下面的罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且有f(a)=f(b),则在(a,b)内至少有一点ξ,使f(ξ)=0。  相似文献   

4.
几乎所有的微积分教科书都论述了下列复合函数的连续性定理: 设函数y=g(z)在z_0点连续,且函数z=f(x)在点x_0连续,z_0=f(x_0),又设复合函数y=g[f(x)]在点x=x_0的某一领域内是有定义的,则复合函数y=g[f(x)]必在x_0处连续。上述定理告诉我们:连续函数的复合函数仍旧是连续函数。现在问:关于复合函数的极限问题,也有类似的结论吗? 为回答这个问题,我们给出如下定理。  相似文献   

5.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

6.
求复合函数的极限,常用其连续性定理。 定理一 若u=g(x)在x_0连续,且u_0=g(x_0);y=f(u)在u_0连续,则复合函数y=f〔g(x)〕在x_0连续。即 lim f〔g(x)〕=f〔g(x_0〕=f〔 lim g(x_0)〕,于是,在f(u)和g(x)都连续的条件下,可利用交换极限号lim和函数号f,求复合函数f〔g(x)〕的极限,如  相似文献   

7.
在一元微积分的教学中,学习函数的极限与连续时,常遇到讨论当x→x_0时,分段函数f(x)在分界点x_0处的极限是否存在;在点x_0处分段函数是否连续;以及分段函数在点x_0处是否可导。学生对这一类利用定义进行讨论的题型感到无从下手,不知如何讨论,现就几个例题作详细的讨论。 一、分段函数f(x)在x→x_0时的极限 对于分段函数常用以下定理来讨论极限是否存在: 如果函数f(x)当x→x_0时的极限存在且等于A,当且仅  相似文献   

8.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

9.
一、单项选择题 对此类型题只要能正确理解与熟练掌握有关的基本概念、定理、性质、重要极限公式与结论即可。 1.下列极限计算正确的有( ) 分析:首先我们来看公式的特点:分式的分子恰为分母式的正弦,且两者都在所考虑的过程中为无穷小,其比值的权限为1.然后再看公式的特点:它恰好是1与无穷小之和的该无穷小的倒置的幂,其极限值为e.故此题中计算正确的是B.2.下面结论正确的有( )A.X_0是f(x)的驻点一定是f(x)的极值点; B.x_0是f(x)极值,则点,则一定是f(x)的驻点; C.f(x)在x_0处可导,则一定在x_0处连续; D.f(x)在x_0处连续,则一定在x_0处可导。 此题要明确以下两点: (1)极值点与驻点的关系:函数的权值点不一定是驻点,函数的驻点也不一定是极值点,但可导函数的极值点必是驻点。  相似文献   

10.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

11.
如果我们能够从约束方程或约束方程组中把其中一些未知数解出,那么将其代入函数式后,所求的条件极值便转化为另一变数较少的函数的普通极值了。定理 4.如果一元函数 z=f(x,φ(x))在 x=x_0处取得最大(小)值,那么二元函数z=f(x,y)在条件 y=φ(x)下在点(x_0 φ(x_0))处也取得最大(小)值。定理 4 可以推广到多元函数的情形。例7.若三个非负变数 x,y,z 满足条件3y 2z=3-x 和3y z=4-3x,求线性函数w=3x-2y 4z 的最大值与最小值。  相似文献   

12.
命题1当a>0,b>0时,函数f(x)=ax-(b/x)在区间(-∞,0)U(0, ∞)上是增函数.证明:设x_1,x_2∈(0 ∞),且x_1>x_2,则f(x_1)-f(x_2)=ax_1-(b/(x_1))-  相似文献   

13.
在高等数学中,有许多命题(或定理)与充要条件有关.例如;在一元微分学中,函数连续是导数存在的必要条件;函数f(x)在点x_0可微的充分必要条件是函数f(x)在点x_0可导.在二元微分学中,函数z=f(x·y)的偏导数(?)z/(?)x·(?)z/(?)y在点p(x·y)连续,则函数在该点的全微分存在(充分条件).……等等.  相似文献   

14.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

15.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

16.
一、函数的极大值(或极小值)、最大值(或最小值)。极大值(或极小值):函数y=f(x)在点x_0的附近有定义,并且f(x_0)的值比在x_0附近所有各点的函数值都大(或都小),那么f(x_0)是函数f(x)的一个极大值(或极小值)。最大值(或最小值):f(x_0)是函数y=f(x)在点x_0的函数值,如果f(x_0)≥f(x)(或f(x_0)≤f(x)),对于定义域内的任意x都成立,那么f(x_0)是函数f(x)的最大值(或最小值)。注意: 1.极值是一个局部概念,只研究f(x_0)与点x_0左右邻近的点的函数值进行大小比较。最值是一个整体概念,是在整个定义域内比较函数值的大小。 2.在整个定义域内,如果有极大值(或极小值),其极大值(或极小值)有可能不止一个。如果  相似文献   

17.
<正>函数极值点偏移问题是中学数学中常见问题.例如,已知函数f(x)在区间(a,b)内有一个极值点x_0,且存在x_1、x_2(x_1相似文献   

18.
[1]中对解的延拓定理叙述如下: 解的延拓定理:如果方程 dy/dx=f (x,y) (1) 右端的函数f (x,y,)在有界区域G中连续,且在G内关于y满足局部的利普希茨(Lipschitz)条件,那末方程(1)的通过G内任何一点(x_0,Y_0)的解y=φ (x)可以延拓,直到点(x,φ.(x))任意接近区域G的边界。以向x增大的一方的延拓来说,如果y=φ(x)只能延拓到区间x_0≤x≤m上,则当x→m时,(x,φ(x))趋于区域G的边界。  相似文献   

19.
一般数学分析教材中(如[1]),都给出多元函数可微的充分性定理是:偏导数f′_x,,f′_y,f′_z不仅在点(x_0,y_0,z_0)处存在,并在它的某一邻域内也存在,此外,它们(作为x,y,z的函数)在这点连续,则函数u=f(x,y,z)在点(x_0,y_0,z_0)处可微。文[2]用另一种方法证明Henle的如下定理:如f:R~2→R的偏导数存在,且至少有一个偏导数连续,则f可微。文[2]并指出这定理在n≥3元时的相应命题一般不真。  相似文献   

20.
中学数学中的最值和极值问题,是中学数学的重要内容之一,也是数学教学的难点之一.本文就这一问题,结合自己的教学实践,谈一些肤浅体会.一、关于函数的最值与极值的概念1.最值定义:设函数y=f(x),在[a,b]内有定义,如果有x_0e[a,b],使得对于任一xe[a,b]都有f(x)≤f(x_0)(或f(x)≥f(x_0))成立,则称函数f(x)在点x_0,处有最大(小)值f(x_0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号