首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
The risk of soccer players sustaining mild traumatic brain injury (MTBI) following head impact with a playing surface is unclear. This study investigates MTBI by performing headform impact tests from varying heights onto a range of third-generation artificial turf surfaces. Each turf was prepared as per manufacturers specifications within a laboratory, before being tested immediately following installation and then again after a bedding-in period. Each turf was tested dry and when wetted to saturation. Data from the laboratory tests were compared to an in situ third-generation surface and a professional grass surface. The surface performance threshold was set at a head impact criterion (HIC) = 400, which equates to a 10% risk of the head impact causing MTBI. All six third-generation surfaces had a >10% risk of MTBI from a fall >0.77 m; the inferior surfaces required a fall from just 0.46 m to have a 10% MTBI risk. Wetting the artificial turf did not produce a statistically significant improvement (P > 0.01). The in situ third-generation playing surface produced HIC values within the range of bedded-in experimental values. However, the natural turf pitch was the superior performer – necessitating fall heights exceeding those achievable during games to achieve HIC = 400.  相似文献   

2.
Multiple playing surfaces and footwear used in American football warrant a better understanding of relationship between different combinations of turf and footwear. The purpose of this study was to examine effects of shoe and stud types on ground reaction force (GRF) and ankle and knee kinematics of a 180° cut and a single-leg 90° land-cut on synthetic turf. Fourteen recreational football players performed five trials of the 180° cut and 90° land-cut in three shoe conditions: non-studded running shoe, and football shoe with natural and synthetic turf studs. Variables were analyzed with a 3 × 2 (shoe × movement) repeated measures analysis of variance (p < 0.05). Peak vertical GRF (p < 0.001) and loading rate (p < 0.001) were greater during 90° land-cut than 180° cut. For 180° cut, natural turf studs produced smaller peak medial GRFs compared to synthetic turf studs and non-studded shoe (p = 0.012). For land-cut, peak eversion velocity was reduced in running shoes compared to natural (p = 0.016) and synthetic (p = 0.002) turf studs. The 90° land-cut movement resulted in greater peak vertical GRF and loading rate compared to the 180° cut. Overall, increased GRFs in the 90° land-cut movement may increase the chance of injury.  相似文献   

3.
The purpose of this study was to evaluate the traction characteristics of four different stud configurations on Fédération Internationale de Football Association (FIFA) 2-Star, third-generation artificial soccer turf. The investigated stud configurations were hard ground design, firm ground design, soft ground design, and an experimental prototype. The concept of this study combines performance, perception, biomechanical, and mechanical testing procedures. Twenty-five soccer players took part in the different testing procedures. Variables of this study were: running times, subjective rankings/ratings, ground reaction forces, and mechanical traction properties. Statistical discrimination between the four stud configurations was shown for performance, perception, and biomechanical testing (p < 0.05). Unsuited stud configurations for playing on artificial turf are characterized by less plain distributed and pronounced studs.  相似文献   

4.
The aim of this cross-sectional study was to compare bone mass in young female athletes playing ball games on different types of playing surfaces. About 120 girls, 9–13 years of age (10.6 ± 1.5 years old Tanner I–III) were recruited and divided into prepubertal and pubertal groups. The sample represented 3 groups of athletes: soccer (N = 40), basketball (N = 40), and handball (N = 40); and 6 different playing surfaces (soccer – ground, soccer – artificial turf, basketball – synthetic, basketball – parquet, handball – synthetic, and handball – smooth concrete). Total and regional body composition (bone mass, fat mass, and lean mass) were measured by dual-energy X-ray absorptiometry (DXA). The mechanical properties of the surfaces (force reduction, vertical deformation, and energy return) were measured with the Advanced Artificial Athlete (Triple A) method. The degree of sexual development was determined using Tanner test. The pubertal group showed that soccer players on the ground, basketball players on synthetic, and handball players on smooth concrete had higher values of bone mineral content (BMC) and bone mineral density (BMD) (< 0.05) than the soccer players on the artificial turf, basketball players on parquet, and handball players on synthetic. In conclusion, a hard playing surface, with less vertical deformation and force reduction, and greater energy return, is associated with higher levels of BMD and BMC in growing girls, regardless of the sport they practice.  相似文献   

5.
Abstract

The aim of this study was to compare the incidence, nature, and cause of injuries sustained in rugby union played on artificial turf and grass. The study comprised a two-season investigation of match injuries sustained by six teams competing in Hong Kong's Division 1 and training injuries sustained by two teams in the English Premiership. Injury definitions and recording procedures were compliant with the international consensus statement on epidemiological studies of injuries in rugby union. There were no significant differences in the overall incidence (rate ratio = 1.42; P = 0.134) or severity (P = 0.620) of match injuries sustained on the two surfaces. The lower limb and joint (non-bone)/ligament injuries were the most common location and type of match injury on both surfaces; the incidence of anterior cruciate ligament injuries was nearly four times higher on artificial turf than grass but the difference was not statistically significant (rate ratio = 3.82; P = 0.222). There were no significant differences in the overall incidence (rate ratio = 1.36; P = 0.204) or severity (P = 0.302) of training injuries sustained on artificial turf and grass. The lower limb and muscle/tendon injuries were the most common location and type of training injury on both surfaces. The results indicate that the overall risks of injury on artificial turf are not significantly different from those experienced on grass; however, the difference in the incidence of anterior cruciate ligament injuries on the two surfaces is worthy of further study.  相似文献   

6.
A measure of stroke smoothness (SS) has been presented previously to indicate the degree to which rowers produce an “ideal” handle force profile that of the positive half of a sine wave [2]. This study aimed to determine the influence of fatigue on SS. Ten male rowers completed a maximal intensity trial. Fast Fourier transform methods were used to calculate SS which was given by the amplitude of the fundamental frequency as a percentage of the sum of the first ten peaks. Visual inspection of the data showed indications of a reduction in movement coordination as a function of fatigue. However, SS did not change significantly between the first, middle and last ten strokes (p = 0.205), despite a 21% reduction in mean power between the start and end of the trial. The results suggested that although the shape of the force profile can qualitatively indicate a reduction in movement coordination, the smoothness of the force profiles remains similar with fatigue.  相似文献   

7.
Artificial surfaces are now an established alternative to grass (natural) surfaces in rugby union. Little is known, however, about their potential to reduce injury. This study characterises the spinal kinematics of rugby union hookers during scrummaging on third-generation synthetic (3G) and natural pitches. The spine was sectioned into five segments, with inertial sensors providing three-dimensional kinematic data sampled at 40 Hz/sensor. Twenty-two adult, male community club and university-level hookers were recruited. An equal number were analysed whilst scrummaging on natural or synthetic turf. Players scrummaging on synthetic turf demonstrated less angular velocity in the lower thoracic spine for right and left lateral bending and right rotation. The general reduction in the range of motion and velocities, extrapolated over a prolonged playing career, may mean that the synthetic turf could result in fewer degenerative injuries. It should be noted, however, that this conclusion considers only the scrummaging scenario.  相似文献   

8.
The existing knowledge of traction on artificial turf is based almost exclusively on mechanical devices. While most attention has traditionally been concentrated on rotational traction, sports such as soccer predominantly involve translational movements. The aim of the study was to investigate whether translational traction at the shoe-surface interface differed between various third-generation artificial turf systems in combination with different cleat configurations in vivo. Twenty-two male soccer players performed five short sprints with a 90° cut over a turf-covered force plate for each combination of three turf systems and three cleat configurations. The results showed that, despite various differences in other traction measures, traction coefficients were almost identical across turf systems and cleat configurations.  相似文献   

9.
Abstract

Race walking is an endurance event which also requires great technical ability, particularly with respect to its two distinguishing rules. The 50 km race walk is the longest event in the athletics programme at the Olympic Games. The aims of this observational study were to identify the important kinematic variables in elite men's 50 km race walking, and to measure variation in those variables at different distances. Thirty men were analysed from video data recorded during a World Race Walking Cup competition. Video data were also recorded at four distances during the European Cup Race Walking and 12 men analysed from these data. Two camcorders (50 Hz) recorded at each race for 3D analysis. The results of this study showed that walking speed was associated with both step length (r=0.54,P=0.002) and cadence (r=0.58,P=0.001). While placing the foot further ahead of the body at heel strike was associated with greater step lengths (r=0.45,P=0.013), it was also negatively associated with cadence (r= ?0.62,P<0.001). In the World Cup, knee angles ranged between 175 and 186° at initial contact and between 180 and 195° at midstance. During the European Cup, walking speed decreased significantly (F=9.35,P=0.002), mostly due to a decrease in step length between 38.5 and 48.5 km (t=8.59,P=0.014). From this study, it would appear that the key areas a 50 km race walker must develop and coordinate are step length and cadence, although it is also important to ensure legal walking technique is maintained with the onset of fatigue.  相似文献   

10.
Previous studies have found that reduced stick stiffness increases puck velocity in young male ice hockey players. This study investigates the hypothesis that female players are disadvantaged by using equipment that is designed for taller and stronger players. The purpose of this study was to investigate if stick flexibility and puck weight affect puck velocity in standing slap shots performed by female ice hockey players. There was a significant increase in puck velocity (4.1%, p = 0.037) when stick stiffness and puck weight were reduced. ANOVA revealed that there was a significant correlation between stick, puck and the participant herself (R 2 = 0.987). Spearman’s correlation analysis revealed that participants with higher puck velocities benefitted the most when the stick flexibility and puck weight were reduced (r = 0.648, p = 0.043). It was concluded that decreased stick stiffness and puck weight increased puck velocity in standing slap shots for female ice hockey players.  相似文献   

11.
The purpose of this study was to evaluate the traction characteristics of four different stud configurations on Fédération Internationale de Football Association (FIFA) 2-Star, third-generation artificial soccer turf. The investigated stud configurations were hard ground design, firm ground design, soft ground design, and an experimental prototype. The concept of this study combines performance, perception, biomechanical, and mechanical testing procedures. Twenty-five soccer players took part in the different testing procedures. Variables of this study were: running times, subjective rankings/ratings, ground reaction forces, and mechanical traction properties. Statistical discrimination between the four stud configurations was shown for performance, perception, and biomechanical testing (p < 0.05). Unsuited stud configurations for playing on artificial turf are characterized by less plain distributed and pronounced studs.  相似文献   

12.
To properly assess sports helmet performance, it is important to select impact conditions that yield high peak linear or angular accelerations. This was done by measuring the kinematic response of a Hybrid III headform when impacted with a modified Wayne State University linear impactor with special consideration for impact locations and angles. The 20 impact conditions (five locations and four angles) were then compared to published thresholds to identify the conditions, which were linked to an increased risk of head injury. These conditions were the following: 1A (linear 121.3g; angular 3.84 krad s−2), 2A (linear 102.1g; angular 9.28 krad s−2), 2C (linear 94.4g; angular 8.67 krad s−2), 3A (linear 132.8g; angular 9.38 krad s−2), 4A (linear 92.8g; angular 11.49 krad s−2), 4D (linear 113.3g; angular 12.86 krad s−2), 5A (linear 116.9g; angular 9.01 krad s−2) and 5D (linear 87.5g; angular 8.81 krad s−2). The results presented in this study were specific to the test rig used as well as the tested conditions; however, it is believed that a test protocol using the above impact conditions could identify the ability of sports helmets to reduce risk of head injuries.  相似文献   

13.
Abstract

In this study, we examined ratings of perceived exertion (RPE) and attentional focus during exercise in relation to telic and paratelic metamotivational dominance and state. Thirty regular exercisers (11 females, 19 males), of whom 10 were telic dominant (mean Paratelic Dominance Scale score=6.2±2.9), 10 paratelic dominant (mean PDS score=23.8±1.4), and 10 non-dominant (mean PDS score=15.4±0.7) completed two exercise trials. In the first trial, the participants completed a maximal ramped exercise test on a motorized treadmill to determine their gas exchange threshold (the speed at which determined exercise intensity of the subsequent trial). Throughout the second trial (a 30-min treadmill run), the participants reported their metamotivational state, RPE, and attentional focus (associative or dissociative) at 5-min intervals. Heart rate was recorded at 3, 8, 13, 18, 23, and 28 min and expired air was analysed for oxygen consumption (VO2) between 1–3, 6–8, 11–13, 16–18, 21–23, and 26–28 min. There was no main effect of dominance or dominance×time interaction on any variables (P >0.05). Oxygen consumption did not differ between states but RPE was higher in the telic than paratelic state at 25 and 30 min (t 28=2.87, P <0.05; t 26.77=3.88, P <0.05, respectively). Attentional focus was more associative in the telic than paratelic state at 20, 25, and 30 min (t 28=? 3.73, P <0.05; t 28=? 4.85, P <0.01; t 28=? 5.15, P <0.05, respectively) and heart rate was higher at 23 min in the telic state (t 27=3.40, P <0.05). During the latter stages of exercise, the telic metamotivational state, not dominance, was related to a more associative attentional focus and higher RPE. Our results support the use of reversal theory (Apter, 2001) to understand perceptual and cognitive responses during aerobic exercise, but an experimental design in which state is manipulated is needed to examine the effects of metamotivational dominance and state on perceptual and cognitive responses.  相似文献   

14.
Abstract

In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; [Vdot]O2max 55.5 ml · kg?1 · min?1, s = 5.8) undertook repeated sprints at 120% of the speed at which [Vdot]O2max was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = ?0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = ?0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

15.
In contrast to the situation with early artificial turf pitches, little information has previously been published on the characterisation of third-generation artificial surfaces. The spatial variation of ball rebound resilience and rotational resistance were measured here under dry conditions, late in the season, for two natural turf football pitches and a recently laid third-generation artificial turf pitch. Data for the natural turf pitches show a wider variation with position on the pitch than for the artificial pitch. The latter surface showed remarkable consistency in both quantities measured. Surprisingly, all ball rebound resilience data and some of the rotational resistance values were found to lie outside current FIFA specifications, possibly due to the level of wear in natural turf at this stage of the season. For the artificial turf, the deterioration in properties over a period of 6 months is significant and suggests more frequent testing is needed. Taking data from various pitch positions, the two measured quantities were shown for the first time, as far as we are aware, to be inversely related for both natural turf pitches. This correlation may be largely attributed to differences in the extent of grass cover and/or soil compaction. For artificial turf, the lack of variation in measured quantities with pitch position precluded the determination of any correlation.  相似文献   

16.
Abstract

The aim of present study was to examine the relationships between serum and salivary values of free testosterone, dehydroepiandrosterone, and cortisol before and after a session of resistance exercise. Twenty-eight healthy men (mean age 40 years, s = 4) participated in the present study. Serum and salivary samples were collected at rest and after a multiple-sets resistance exercise protocol, of approximately 25 minutes duration. Concentrations of free testosterone, dehydroepiandrosterone, and cortisol were measured using radioimmunoassay kits. No significant correlation was observed between serum free testosterone and salivary testosterone (r = 0.22 to 0.26, P > 0.05). Serum cortisol was significantly correlated with salivary cortisol before (r = 0.52, P = 0.005) and after (r = 0.62, P = 0.001) the exercise protocol. Serum and salivary concentrations of dehydroepiandrosterone were significantly correlated before (r = 0.68, P < 0.001) and after (r = 0.7, P < 0.001) exercise. The results of the present study suggest that even under exercise conditions, the salivary values of cortisol and dehydroepiandrosterone can reflect the behaviour of these hormones in blood. However, further studies are necessary to verify if salivary testosterone reflects the behaviour of serum free testosterone during resistance exercise.  相似文献   

17.
The aim of this study was to investigate the effect of playing surface on physiological and performance responses during and in the 48 h after simulated soccer match play. Blood lactate, single-sprint, repeated-sprint and agility of eight amateur soccer players were assessed throughout a 90-min soccer-simulation protocol (SSP) completed on natural turf (NT) and artificial turf. Counter-movement jump, multiple-rebound jump, sprint (10 m, 60 m), L-agility run (L-AR), creatine kinase (CK) and perception of muscle soreness (PMS) were measured before, immediately after, 24 h and 48 h after exercise. Analyses revealed significant changes in blood lactate and single-sprint performance (both P < 0.05) during the SSP but with no significant differences between surfaces. Conversely, repeated-sprint performance demonstrated an interaction effect, with reductions in performance evident on NT only (P < 0.05). Whilst L-AR and 10-m sprint performance remained unchanged, 60-m sprint and multiple-rebound jump performance were impaired, and PMS and CK were elevated immediately following the SSP (all P < 0.05) but with no surface effects. Although performance, CK and PMS were negatively affected to some degree in the 48 h after the SSP, there was no surface effect. For the artificial and natural surfaces used in the present study, physiological and performance responses to simulated soccer match play appear to be similar. Whilst a potential for small differences in performance response exists during activity, surface type does not affect the pattern of recovery following simulated match play.  相似文献   

18.
This study examined whether avoiding or experiencing exercise-induced muscle damage (EIMD) influences strength gain after downhill walking training. Healthy young males performed treadmill downhill walking (gradient: ?28%, velocity: 5 km · h?1 and load: 10% of body mass) 1 session per week for four weeks using either a ramp-up protocol (n = 16), where exercise duration was gradually increased from 10 to 30, 50 and 70 min over four sessions, or a constant protocol (n = 14), where exercise duration was 40 min for all four sessions. Indirect markers of EIMD were measured throughout the training period. Maximal knee extension torque in eccentric (?1.05 rad·s?1), isometric and concentric (1.05 rad·s?1) conditions were measured at pre- and post-training. The ramp-up group showed no indications of EIMD throughout the training period (e.g., plasma creatine kinase (CK) activity: always <185 U · L?1) while EIMD was evident after the first session in the constant group (CK: peak 485 U · L?1). Both groups significantly increased maximal knee extension torque in all conditions with greater gains in eccentric (ramp-up: +19%, constant: +21%) than isometric (+16%, +15%) and concentric (+12%, +10%) strength without any significant group-difference. The current results suggest that EIMD can be avoided by the ramp-up protocol and is not a major determinant of training-induced strength gain.  相似文献   

19.
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2?±?7.1 years; body mass index: 23.0?±?1.1?kg·m?2; V˙O2max: 55.4?±?4.0 mlO2·kg?1·min?1) were divided into an exercise (EG?=?13) and control group (CG?=?12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14?km·h?1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p?<?.05) at all tested running speeds (?6.4?±?6.5% at 8?km·h?1; ?3.5?±?5.3% at 10?km·h?1; ?4.0?±?5.5% at 12?km·h?1; ?3.2?±?4.5% at 14?km·h?1), contact time (tc) increased at 8, 10 and 12?km·h?1 by mean +4.4?±?0.1% and ta decreased by ?25.6?±?0.1% at 8?km·h?1 (p?<?.05). Further, inverse relationships between changes in Cr and MMP at 10 (p?=?.013; r?=??0.67) and 12?km·h?1 (p?<?.001; r?=??0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.  相似文献   

20.
Sport-specific resistance training, through limb loading, can be a complimentary training method to traditional resistance training by loading the working muscles during all phases of a specific movement. The purpose of this study was to examine the acute effects of skating with an additional load on the skate, using a skate weight prototype, on kinematics, kinetics, and muscle activation during the acceleration phase while skating on a synthetic ice surface. 10 male hockey skaters accelerated from rest (standing erect with knees slightly bent) under four non-randomized load conditions: baseline 1 (no weight), light (0.9 kg per skate), heavy (1.8 kg per skate), and baseline 2 (no weight). Skating with additional weight caused athletes to skate slower (p < 0.001; η2 = 0.551), and led to few changes in kinematics: hip sagittal range of motion (ROM) decreased (2.2°; p = 0.032; η2 = 0.274), hip transverse ROM decreased (3.4°; p < 0.001; η2 = 0.494), ankle sagittal ROM decreased (2.3°; p = 0.022; η2 = 0.295), and knee sagittal ROM increased (7.8°; < 0.001, η2 = 0.761). Overall, weighted skates decreased skating velocity, but athletes maintained similar muscle activation profiles (magnitude and trends) with minor changes to their skating kinematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号