首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the "front foot" style or the "reverse" style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

2.
Abstract

Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the “Front Foot” and “Reverse” styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

3.
Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

4.
Weight transfer research in the golf swing has produced conflicting and inconclusive results. A limitation of previous studies is the assumption that only one swing "style" exists within the golf swing. If different styles, or movement strategies, exist and if the different styles are analysed together in a single group, statistical errors will result. The aim of this study was to determine if different weight transfer styles exist in the golf swing by applying cluster analysis to centre of pressure (CP) patterns in the direction of hit (CPy) and to evaluate cluster analysis issues. Sixty-two professional to high handicap golfers performed simulated drives, hitting a golf ball into a net, while standing on two force plates. Centre of pressure position relative to the feet (CPy%) was quantified at eight swing events identified from 200-Hz video. Cluster analysis identified two major CPy% styles: a "Front Foot" style and a "Reverse" style. Both styles began with CPy% positioned evenly between the feet, moved to the back foot during backswing, and then forward during early downswing. Beyond early downswing, the Front Foot group continued to move CPy% to the Front Foot through to ball contact, while the Reverse group moved CPy% towards the back foot through ball contact and follow-through. Both weight transfer styles were evident across skill levels from professional to high handicap golfers, indicating that neither style was a technical error. Cluster analysis should include hierarchical and non-hierarchical clustering and use objective measures combined with theoretical assessment to determine the optimal number of clusters. Furthermore, a number of validation procedures should always be used to validate the solution.  相似文献   

5.
The purpose of this study was to compare the electromyography (EMG) patterns of the thoracic and lumbar regions of the erector spinae (ES) muscle during the golf swing whilst using four different golf clubs. Fifteen right-handed male golfers performed a total of twenty swings in random order using the driver, 4-iron, 7-iron and pitching-wedge. Surface EMG was recorded from the lead and trail sides of the thoracic and lumbar regions of the ES muscle (T8, L1 and L5 lateral to the spinous-process). Three-dimensional high-speed video analysis was used to identify the backswing, forward swing, acceleration, early and late follow-through phases of the golf swing. No significant differences in muscle-activation levels from the lead and trail sides of the thoracic and lumbar regions of the ES muscle were displayed between the driver, 4-iron, 7-iron and pitching-wedge (P > 0.05). The highest mean thoracic and lumbar ES muscle-activation levels were displayed in the forward swing (67–99% MVC) and acceleration (83–106% MVC) phases of the swing for all clubs tested. The findings from this study show that there were no significant statistical differences between the driver, 4-iron, 7-iron and pitching-wedge when examining muscle activity from the thoracic and lumbar regions of the ES muscle.  相似文献   

6.
The golf swing has been modelled as a planar movement, but recent findings suggest that the upper limbs and golf club do not move in a single plane. However, the idea that the club alone can be swung in a single inclined plane has not been investigated mathematically. The aims of this study were to determine whether a single plane could be fitted to club motion, and if this plane varied for different clubs. Ten golfers (handicap 1-5) performed repeated, consistent swings with three clubs (driver, 5-iron, and pitching wedge). The motion of each club during the downswing was fitted to a single plane. The fit of the plane varied between golfers and clubs (r(2) = 0.871-0.995, root mean square residual = 44.9-166.2 mm). Mean angles of the plane to the reference horizontal Z axis (driver: 125.5 degrees , s = 3.0; 5-iron: 117.1 degrees , s = 3.0; wedge: 113.6 degrees , s = 2.7) and target line axis (driver: -7.8 degrees , s = 5.9; 5-iron: -4.9 degrees , s = 5.7; wedge: -5.9 degrees , s = 6.0) were significantly (P < 0.05) different. Further analysis revealed a single plane was more appropriate for some participants than others, but that it might be neither desirable nor possible in some cases.  相似文献   

7.
Teaching and playing professionals offer multiple theories concerning the manner in which forces should be applied to the handle of the club during the golf swing. This study extends recent research concerning grip pressures and forces in golf, with the purpose of exploring the similarities and differences between force profiles for a 7-iron and driver swung by proficient golfers. A secondary purpose was to further analyze the way that golfers use grip forces to manipulate the club. Grip forces were measured on eight low handicap golfers (USGA indexes 0 to 7) swinging their own 7-irons and drivers. In total, lead-hand and trail-hand grip forces were isolated as well as anatomically specific forces within the hands. Force profile variability across multiple swings for each golfer and between golfers characterized consistencies and important differences. Correlations between 7-iron and driver force profiles characterized force ‘signatures.’ The data highlight large fluctuations in grip forces during the swing. Marked differences between participants were observed, involving force magnitudes and phasing. Dominant forces arose primarily from the lead hand, specifically the last three fingers. Force profiles were highly repeatable across swings for a golfer (standard deviations < 7% of total force) and force profile correlations between 7-iron and driver for a golfer were remarkably high (r2 = 0.86). Notably, within swing force variability was greatest during club acceleration, but dramatically decreased at impact.  相似文献   

8.
Weight transfer has been identified as important in group-based analyses. The aim of this study was to extend this work by examining the importance of weight transfer in the golf swing on an individual basis. Five professional and amateur golfers performed 50 swings with the driver, hitting a ball into a net. The golfer's centre of pressure position and velocity, parallel with the line of shot, were measured by two force plates at eight swing events that were identified from high-speed video. The relationships between these parameters and club head velocity at ball contact were examined using regression statistics. The results did support the use of group-based analysis, with all golfers returning significant relationships. However, results were also individual-specific, with golfers returning different combinations of significant factors. Furthermore, factors not identified in group-based analysis were significant on an individual basis. The most consistent relationship was a larger weight transfer range associated with a larger club head velocity (p < 0.05). All golfers also returned at least one significant relationship with rate of weight transfer at swing events (p < 0.01). Individual-based analysis should form part of performance-based biomechanical analysis of sporting skills.  相似文献   

9.
The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70–76% and 68–73% EMGMAX, respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.  相似文献   

10.
Abstract

The golf swing has been modelled as a planar movement, but recent findings suggest that the upper limbs and golf club do not move in a single plane. However, the idea that the club alone can be swung in a single inclined plane has not been investigated mathematically. The aims of this study were to determine whether a single plane could be fitted to club motion, and if this plane varied for different clubs. Ten golfers (handicap 1 – 5) performed repeated, consistent swings with three clubs (driver, 5-iron, and pitching wedge). The motion of each club during the downswing was fitted to a single plane. The fit of the plane varied between golfers and clubs (r 2 = 0.871 – 0.995, root mean square residual = 44.9 – 166.2 mm). Mean angles of the plane to the reference horizontal Z axis (driver: 125.5°, s = 3.0; 5-iron: 117.1°, s = 3.0; wedge: 113.6°, s = 2.7) and target line axis (driver: ?7.8°, s = 5.9; 5-iron: ?4.9°, s = 5.7; wedge: ?5.9°, s = 6.0) were significantly (P < 0.05) different. Further analysis revealed a single plane was more appropriate for some participants than others, but that it might be neither desirable nor possible in some cases.  相似文献   

11.
Abstract

During practice and competition, golfers are required to use submaximal effort to hit the ball a given distance, i.e., perform a partial shot. While the full golf swing has undergone extensive research, little has addressed partial shots and the biomechanical modifications golfers employ. This study investigates the biomechanical changes between full and partial swings, and determines if the partial swing is a scaled version of the full swing. Using a repeated measures design, 13 male golfers completed a minimum of 10 swings in the full and partial swing conditions, whilst club, ball, kinematic, and kinetic parameters were recorded. Large and statistically significant reductions in body motion (centre of pressure ellipse: 33.0%, p = 0.004, d = 2.26), combined with moderate reductions in lateral shift (25.5%, p = 0.004, d = 0.33) and smaller reductions in trunk rotation (arm to vertical at top of backswing: 14.1%, p = 0.002, d = 2.58) indicate golfers favour larger reductions in proximal measures, combined with diminished reductions as variables moved distally. Furthermore, the partial swing was not found to be a scaled version of the full swing implying a new approach to coaching practices might be considered.  相似文献   

12.
Disagreements exist in the literature regarding the manner in which weight should be dynamically shared during the golf swing, both within-feet and between the back- and target-foot, to generate maximal clubhead speed. The purpose of this study was to determine whether preferential foot-loading locations underlie weight sharing by examining the correlation between clubhead speed and maximum plantar pressure (PP) distributions. Thirty-two amateur golfers with handicap indexes ranging from 2.7 to 25 performed 10 driver swings on artificial turf following a warm-up. PP distributions were recorded at 100 Hz, and clubhead speed was recorded using a ball-tracking Doppler radar system. Maximum PPs were extracted from a 2-s window approximately centred on ball contact and were regressed against clubhead speed. Significance was assessed over the entire foot surface using statistical parametric mapping (SPM), a spatially continuous technique. SPM revealed, at relatively high anatomical resolution, significant positive correlations between clubhead speed and PPs in the lateral target-foot (P < 0.05). This suggests that not only weight transfer but also weight-transfer location may be an important determinant of clubhead speed in amateur golfers.  相似文献   

13.
Pelvis-thorax coordination has been recognised to be associated with swing speed. Increasing angular separation between the pelvis and thorax has been thought to initiate the stretch shortening cycle and lead to increased clubhead speed. The purpose of this study was to determine whether pelvis-thorax coupling played a significant role in regulating clubhead speed, in a group of low-handicap golfers (mean handicap = 4.1). Sixteen participants played shots to target distances determined based on their typical 5- and 6-iron shot distances. Half the difference between median 5- and 6-iron distance for each participant was used to create three swing effort conditions: “minus”, “norm”, and “plus”. Ten shots were played under each swing effort condition using both the 5-iron and 6-iron, resulting in six shot categories and 60 shots per participant. No significant differences were found for X-factor for club or swing effort. X-factor stretch showed significant differences for club and swing effort. Continuous relative phase (CRP) results mainly showed evidence of the stretch shortening cycle in the downswing and that it was more pronounced late in the downswing as swing effort increased. Substantial inter-individual CRP variability demonstrated the need for individual analyses when investigating coordination in the golf swing.  相似文献   

14.
ABSTRACT

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards the medial aspect of the foot relating to stability mechanisms associated with the golf swing. We hypothesised that by altering the position of the foot pressure, the lower body stabilisation would improve which in turn would enhance weight distribution and underpinning lower body joint kinematics. Eight professional golf association (PGA) golf coaches performed five golf swings, recorded using a nine-camera motion analysis system synchronised with two force platforms. Following verbal intervention, they performed further five swings. One participant returned following a one-year intervention programme and performed five additional golf swings to provide a longitudinal case study analysis. Golf performance was unchanged evidenced by the velocity and angle of the club at ball impact (BI), although the one-year intervention significantly changed the percentage of weight experienced at each foot in the final 9% of downswing, which provided an even weight distribution at BI. This is a highly relevant finding as it indicates that the foot centre of pressure was central to the base of support and in-line with the centre of mass (CoM), indicating significantly increased stability when the CoM is near maximal acceleration.  相似文献   

15.
The purpose of this study was to evaluate possible effects of synchronized metronome training (SMT) on movement dynamics during golf-swing performance, as captured by kinematic analysis. A one-group, between-test design was applied on 13 male golfers (27.5 ± 4.6 years old, 12.7 ± 4.9 handicap) who completed 12 sessions of SMT over a four-week period. Pre- and post-assessments of golf swings with three different clubs (4-iron, 7-iron, and pitching wedge) were performed using a three-dimensional motion capture system. Club velocity at three different swing phases (backswing, downswing, and follow-through) was measured and cross-correlation analysis of time-series signals were made on joint couplings (wrist–elbow–shoulder) of both arms, and between joints and the club, during the full golf swing. There were significantly higher cross-correlations between joint-couplings and concomitant changes of the associated phase-shift differences, as well as reduced phase-shift variability at post-test. No significant effect of SMT was found for the club velocities. We suggest that domain-general influences of SMT on the underlying brain-based motor control strategies lead to a more coordinated movement pattern of the golf-swing performance, which may explain previous observations of significantly improved golf-shot accuracy and decreased variability after SMT.  相似文献   

16.
The purposes of this study were (1) to determine the functional swing plane (FSP) of the clubhead and the motion planes (MPs) of the shoulder/arm points and (2) to assess planarity of the golf swing based on the FSP and the MPs. The swing motions of 14 male skilled golfers (mean handicap = -0.5 +/- 2.0) using three different clubs (driver, 5-iron, and pitching wedge) were captured by an optical motion capture system (250Hz). The FSP and MPs along with their slope/relative inclination and direction/direction of inclination were obtained using a new trajectory-plane fitting method. The slope and direction of the FSP revealed a significant club effect (p < 0.001). The relative inclination and direction of inclination of the MP showed significant point (p < 0.001) and club (p < 0.001) effects and interaction (p < 0.001). Maximum deviations of the points from the FSP revealed a significant point effect (p < 0.001) and point-club interaction (p < 0.001). It was concluded that skilled golfers exhibited well-defined and consistent FSP and MPs, and the shoulder/arm points moved on vastly different MPs and exhibited large deviations from the FSP. Skilled golfers in general exhibited semi-planar downswings with two distinct phases: a transition phase and a planar execution phase.  相似文献   

17.
The aims of this study were to examine the effect of shaft flexibility on the performance of junior golfers and to determine whether there is a relationship between golfers' physical characteristics (16 anthropometric measures, age, experience, strength), performance and shaft flexibility. We assessed the performance of 30 male golfers, aged 7–10 years, with three 7-iron golf clubs of different shaft flexibility at a driving range. The performance parameters measured for equipment evaluation were ball distance achieved, shot dispersion and impact position of the ball on the clubface. The results suggest that there is no particular shaft flex suitable for the age group considered and that experience, strength and arm span are the significant factors when selecting optimal shaft flexibility for children.  相似文献   

18.
The purpose of this study was to compare kinetic, kinematic, and performance variables associated with full and shortened modern backswings in a skilled group of modern swing (one-plane) golfers. Shortening the modern golf backswing is proposed to reduce vertebral spine stress, but supporting evidence is lacking and performance implications are unknown. Thirteen male golfers performed ten swings of each swing type using their own 7-iron club. Biomechanical-dependent variables included the X-Factor kinematic data and spine kinetics. Performance-related dependent variables included club head velocity (CHV), shot distance, and accuracy (distance from the target line). Data were analysed with repeated measures ANOVA with an a priori alpha of 0.05 (SPSS 22.0, IBM, Armonk, NY, USA). We found significant reductions for the X-Factor (p < 0.05) between the full and shortened swings. The shortened swing condition ameliorated vertebral compression force from 7.6 ± 1.4 to 7.0 ± 1.7 N (normalised to body weight, p = 0.01) and significantly reduced CHV (p < 0.05) by ~2 m/s with concomitant shot distance diminution by ~10 m (p < 0.05). Further research is necessary to examine the applicability of a shortened swing for golfers with low back pain.  相似文献   

19.
The aims of this study were to examine the effect of shaft flexibility on the performance of junior golfers and to determine whether there is a relationship between golfers' physical characteristics (16 anthropometric measures, age, experience, strength), performance and shaft flexibility. We assessed the performance of 30 male golfers, aged 7-10 years, with three 7-iron golf clubs of different shaft flexibility at a driving range. The performance parameters measured for equipment evaluation were ball distance achieved, shot dispersion and impact position of the ball on the clubface. The results suggest that there is no particular shaft flex suitable for the age group considered and that experience, strength and arm span are the significant factors when selecting optimal shaft flexibility for children.  相似文献   

20.
Field-based methods of evaluating three-dimensional (3D) swing kinematics offer coaches and researchers the opportunity to assess golfers in context-specific environments. The purpose of this study was to establish the inter-trial, between-tester, between-location, and between-day repeatability of thorax and pelvis kinematics during the downswing using an electromagnetic motion capture system. Two experienced testers measured swing kinematics in 20 golfers (handicap < or =14 strokes) on consecutive days in an indoor and outdoor location. Participants performed five swings with each of two clubs (five-iron and driver) at each test condition. Repeatability of 3D kinematic data was evaluated by computing the coefficient of multiple determination (CMD) and the systematic error (SE). With the exception of pelvis forward bend for between-day and between-tester conditions, CMDs exceeded 0.854 for all variables, indicating high levels of overall waveform repeatability across conditions. When repeatability was compared across conditions using MANOVA, the lowest CMDs and highest SEs were found for the between-tester and between-day conditions. The highest CMDs were for the inter-trial and between-location conditions. The absence of significant differences in CMDs between these two conditions supports this method of analysing pelvis and thorax kinematics in different environmental settings without unduly affecting repeatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号