首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

2.
Weight transfer research in the golf swing has produced conflicting and inconclusive results. A limitation of previous studies is the assumption that only one swing "style" exists within the golf swing. If different styles, or movement strategies, exist and if the different styles are analysed together in a single group, statistical errors will result. The aim of this study was to determine if different weight transfer styles exist in the golf swing by applying cluster analysis to centre of pressure (CP) patterns in the direction of hit (CPy) and to evaluate cluster analysis issues. Sixty-two professional to high handicap golfers performed simulated drives, hitting a golf ball into a net, while standing on two force plates. Centre of pressure position relative to the feet (CPy%) was quantified at eight swing events identified from 200-Hz video. Cluster analysis identified two major CPy% styles: a "Front Foot" style and a "Reverse" style. Both styles began with CPy% positioned evenly between the feet, moved to the back foot during backswing, and then forward during early downswing. Beyond early downswing, the Front Foot group continued to move CPy% to the Front Foot through to ball contact, while the Reverse group moved CPy% towards the back foot through ball contact and follow-through. Both weight transfer styles were evident across skill levels from professional to high handicap golfers, indicating that neither style was a technical error. Cluster analysis should include hierarchical and non-hierarchical clustering and use objective measures combined with theoretical assessment to determine the optimal number of clusters. Furthermore, a number of validation procedures should always be used to validate the solution.  相似文献   

3.
Weight transfer has been identified as important in group-based analyses. The aim of this study was to extend this work by examining the importance of weight transfer in the golf swing on an individual basis. Five professional and amateur golfers performed 50 swings with the driver, hitting a ball into a net. The golfer's centre of pressure position and velocity, parallel with the line of shot, were measured by two force plates at eight swing events that were identified from high-speed video. The relationships between these parameters and club head velocity at ball contact were examined using regression statistics. The results did support the use of group-based analysis, with all golfers returning significant relationships. However, results were also individual-specific, with golfers returning different combinations of significant factors. Furthermore, factors not identified in group-based analysis were significant on an individual basis. The most consistent relationship was a larger weight transfer range associated with a larger club head velocity (p < 0.05). All golfers also returned at least one significant relationship with rate of weight transfer at swing events (p < 0.01). Individual-based analysis should form part of performance-based biomechanical analysis of sporting skills.  相似文献   

4.
When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the "front foot" style or the "reverse" style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

5.
Abstract

When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the “front foot” style or the “reverse” style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

6.
Effects of fatigue on golf performance   总被引:1,自引:0,他引:1  
The purpose of this study was to determine if body position, weight transfer, and/or pelvis/trunk rotations changed as a result of a golf specific fatiguing protocol and whether these changes affected resultant club head velocity at impact and shot consistency. Six male golfers and one female golfer participated in the study, who had a mean age, height, and body mass of 23.9 +/- 3.9 years, 177.4 +/- 4.9 cm, and 75.3 +/- 9.9 kg, respectively. Path analysis was used to determine the relationships between fatigue, biomechanical variables, and resultant club head velocity at impact and shot consistency. In the statistical models representing the effects of biomechanical variables calculated at the top of the swing and ball contact, golf specific fatigue was associated with a 2.0% and 2.5% reduction in the club head velocity and a 7.1% and 9.4% improvement in the shot consistency, respectively. These data suggest that golf specific fatigue was not related to the initial lower body sagittal plane angles at address nor was simulated golf specific fatigue related to peak transverse plane pelvis and trunk rotational velocities (or their timings) in a manner that indicates a relationship to resultant club head velocity and shot consistency.  相似文献   

7.
目的:从生物力学角度探究声音反馈训练(teaching with acoustical guidance,TAGteachTM)和传统训练方法对高尔夫初学者击球效果和挥杆动作的影响。方法:21名无高尔夫训练基础的大学生受试者随机分为声音反馈训练组(clicker training group,CG,n=11)和传统训练组(traditional training group,TG,n=10),由一名韩国职业高尔夫教练员进行5周的高尔夫挥杆动作教学训练,使用7号铁杆。训练后,对受试进行挥杆动作生物力学测试,对比两组受试者的击球效果和挥杆动作。结果:5周声音反馈训练后,CG杆速、球速、杆面角度、击球距离等击球表现指标显著优于TG(P<0.01)。挥杆动作方面,CG从上杆阶段到随挥初期挥杆时间显著小于TG(P<0.05),骨盆转动速度显著大于TG(P<0.05);CG骨盆转动角度和COM-COP倾角的标准化角加速度变化率显著小于TG(P<0.05)。结论:声音反馈是一种有效的训练辅助手段,可提升高尔夫初学者的挥杆练习效果。  相似文献   

8.
It is believed that increasing the X-factor (movement of the shoulders relative to the hips) during the golf swing can increase ball velocity at impact. Increasing the X-factor may also increase the risk of low back pain. The aim of this study was to provide recommendations for the three-dimensional (3D) measurement of the X-factor and lower trunk movement during the golf swing. This three-part validation study involved; (1) developing and validating models and related algorithms (2) comparing 3D data obtained during static positions representative of the golf swing to visual estimates and (3) comparing 3D data obtained during dynamic golf swings to images gained from high-speed video. Of particular interest were issues related to sequence dependency. After models and algorithms were validated, results from parts two and three of the study supported the conclusion that a lateral bending/flexion-extension/axial rotation (ZYX) order of rotation was deemed to be the most suitable Cardanic sequence to use in the assessment of the X-factor and lower trunk movement in the golf swing. The findings of this study have relevance for further research examining the X-factor its relationship to club head speed and lower trunk movement and low back pain in golf.  相似文献   

9.
It is believed that increasing the X-factor (movement of the shoulders relative to the hips) during the golf swing can increase ball velocity at impact. Increasing the X-factor may also increase the risk of low back pain. The aim of this study was to provide recommendations for the three-dimensional (3D) measurement of the X-factor and lower trunk movement during the golf swing. This three-part validation study involved; (1) developing and validating models and related algorithms (2) comparing 3D data obtained during static positions representative of the golf swing to visual estimates and (3) comparing 3D data obtained during dynamic golf swings to images gained from high-speed video. Of particular interest were issues related to sequence dependency. After models and algorithms were validated, results from parts two and three of the study supported the conclusion that a lateral bending/flexion-extension/axial rotation (ZYX) order of rotation was deemed to be the most suitable Cardanic sequence to use in the assessment of the X-factor and lower trunk movement in the golf swing. The findings of this study have relevance for further research examining the X-factor its relationship to club head speed and lower trunk movement and low back pain in golf.  相似文献   

10.
ABSTRACT

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards the medial aspect of the foot relating to stability mechanisms associated with the golf swing. We hypothesised that by altering the position of the foot pressure, the lower body stabilisation would improve which in turn would enhance weight distribution and underpinning lower body joint kinematics. Eight professional golf association (PGA) golf coaches performed five golf swings, recorded using a nine-camera motion analysis system synchronised with two force platforms. Following verbal intervention, they performed further five swings. One participant returned following a one-year intervention programme and performed five additional golf swings to provide a longitudinal case study analysis. Golf performance was unchanged evidenced by the velocity and angle of the club at ball impact (BI), although the one-year intervention significantly changed the percentage of weight experienced at each foot in the final 9% of downswing, which provided an even weight distribution at BI. This is a highly relevant finding as it indicates that the foot centre of pressure was central to the base of support and in-line with the centre of mass (CoM), indicating significantly increased stability when the CoM is near maximal acceleration.  相似文献   

11.
Wrist movements have been identified as an important factor in producing a successful golf swing, with their complex motion influencing both club head velocity and orientation. However, a detailed analysis of wrist angles is lacking in the literature. The purpose of this study was to determine kinematics across wrists and club head characteristics during the golf swing under weak, neutral and strong grip conditions. Twelve professional male golfers executed 24 shots using a driver under three grip conditions. A six degrees of freedom analysis of the hand with respect to the distal forearm was performed using a 10-camera three-dimensional motion capture system. Differences in joint angles were explored using repeated measures ANOVAs at key swing events (onset, top of backswing and impact), in addition club head velocity and clubface angle at impact were also explored. Main findings revealed significant differences in flexion/extension and internal/external rotation for both wrists at all swing events, whereas fewer significant interactions were found in ulnar/radial deviation across grips for both wrists at all events. Clubface angle only differed significantly between the weak and the strong and neural grips, presenting a more ‘open’ clubface to the intended hitting direction. This study is the first to explore tri-planar wrist movement and the effect of different grips, such analysis has implications for coaching knowledge and practice and should inform future research into different aspects of skill, technique analysis and may inform injury mechanisms/prevention.  相似文献   

12.
Abstract

During practice and competition, golfers are required to use submaximal effort to hit the ball a given distance, i.e., perform a partial shot. While the full golf swing has undergone extensive research, little has addressed partial shots and the biomechanical modifications golfers employ. This study investigates the biomechanical changes between full and partial swings, and determines if the partial swing is a scaled version of the full swing. Using a repeated measures design, 13 male golfers completed a minimum of 10 swings in the full and partial swing conditions, whilst club, ball, kinematic, and kinetic parameters were recorded. Large and statistically significant reductions in body motion (centre of pressure ellipse: 33.0%, p = 0.004, d = 2.26), combined with moderate reductions in lateral shift (25.5%, p = 0.004, d = 0.33) and smaller reductions in trunk rotation (arm to vertical at top of backswing: 14.1%, p = 0.002, d = 2.58) indicate golfers favour larger reductions in proximal measures, combined with diminished reductions as variables moved distally. Furthermore, the partial swing was not found to be a scaled version of the full swing implying a new approach to coaching practices might be considered.  相似文献   

13.
Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)–centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM–COP inclination angle, COM–COP inclination angular velocity and normalised COM–COP inclination angular jerk were used. Professional golfer group revealed a smaller COM–COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM–COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.  相似文献   

14.
Low back pain is a common musculoskeletal disorder affecting golfers, yet little is known of the specific mechanisms responsible for this injury. The aim of this study was to compare golf swing spinal motion in three movement planes between six male professional golfers with low back pain (age 29.2 - 6.4 years; height 1.79 - 0.04 m; body mass 78.2 - 12.2 kg; mean - s ) and six without low back pain (age 32.7 - 4.8 years; height 1.75 - 0.03 m; body mass 85.8 - 10.9 kg) using a lightweight triaxial electrogoniometer. We found that golfers with low back pain tended to flex their spines more when addressing the ball and used significantly greater left side bending on the backswing. Golfers with low back pain also had less trunk rotation (obtained from a neutral posture), which resulted in a relative 'supramaximal' rotation of their spines when swinging. Pain-free golfers demonstrated over twice as much trunk flexion velocity on the downswing, which could relate to increased abdominal muscle activity in this group. This study is the first to show distinct differences in the swing mechanics between golfers with and without low back pain and provides valuable guidance for clinicians and teachers to improve technique to facilitate recovery from golf-related low back pain.  相似文献   

15.
Comparison of spine motion in elite golfers with and without low back pain   总被引:1,自引:1,他引:0  
Low back pain is a common musculoskeletal disorder affecting golfers, yet little is known of the specific mechanisms responsible for this injury. The aim of this study was to compare golf swing spinal motion in three movement planes between six male professional golfers with low back pain (age 29.2+/-6.4 years; height 1.79+/-0.04 m; body mass 78.2+/-12.2 kg; mean +/- s) and six without low back pain (age 32.7+/-4.8 years; height 1.75+/-0.03 m; body mass 85.8+/-10.9 kg) using a lightweight triaxial electrogoniometer. We found that golfers with low back pain tended to flex their spines more when addressing the ball and used significantly greater left side bending on the backswing. Golfers with low back pain also had less trunk rotation(obtained from a neutral posture), which resulted in a relative 'supramaximal' rotation of their spines when swinging. Pain-free golfers demonstrated over twice as much trunk flexion velocity on the downswing, which could relate to increased abdominal muscle activity in this group. This study is the first to show distinct differences in the swing mechanics between golfers with and without low back pain and provides valuable guidance for clinicians and teachers to improve technique to facilitate recovery from golf-related low back pain.  相似文献   

16.
While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.  相似文献   

17.
Most previous research on golf swing mechanics has focused on the driver club. The aim of this study was to identify the kinematic factors that contribute to greater hitting distance when using the 5 iron club. Three-dimensional marker coordinate data were collected (250 Hz) to calculate joint kinematics at eight key swing events, while a swing analyser measured club swing and ball launch characteristics. Thirty male participants were assigned to one of two groups, based on their ball launch speed (high: 52.9 ± 2.1 m · s(-1); low: 39.9 ± 5.2 m · s(-1)). Statistical analyses were used to identify variables that differed significantly between the two groups. Results showed significant differences were evident between the two groups for club face impact point and a number of joint angles and angular velocities, with greater shoulder flexion and less left shoulder internal rotation in the backswing, greater extension angular velocity in both shoulders at early downswing, greater left shoulder adduction angular velocity at ball contact, greater hip joint movement and X Factor angle during the downswing, and greater left elbow extension early in the downswing appearing to contribute to greater hitting distance with the 5 iron club.  相似文献   

18.
The aim of this review was to determine how the findings of biomechanics and motor control/learning research may be used to improve golf performance. To be eligible, the biomechanics and motor learning studies had to use direct (ball displacement and shot accuracy) or indirect (clubhead velocity and clubface angle) golf performance outcome measures. Biomechanical studies suggested that reducing the radius path of the hands during the downswing, increasing wrist torque and/or range of motion, delaying wrist motion to late in the downswing, increasing downswing amplitude, improving sequential acceleration of body parts, improving weight transfer, and utilising X-factor stretch and physical conditioning programmes can improve clubhead velocity. Motor learning studies suggested that golf performance improved more when golfers focused on swing outcome or clubhead movement rather than specific body movements. A distributed practice approach involving multiple sessions per week of blocked, errorless practice may be best for improving putting accuracy of novice golfers, although variable practice may be better for skilled golfers. Video, verbal, or a combination of video and verbal feedback can increase mid-short iron distance in novice to mid-handicap (hcp) golfers. Coaches should not only continue to critique swing technique but also consider how the focus, structure, and types of feedback for practice may alter learning for different groups of golfers.  相似文献   

19.
Analysing the centre of pressure (COP) and centre of gravity (COG) could reveal stabilising strategies used by golfers throughout the golf swing. This study identified and compared golfers’ COP and COG patterns throughout the golf swing in medial–lateral (ML) and anterior–posterior (AP) directions using principal component analysis (PCA) and examined their relationship to clubhead velocity. Three-dimensional marker trajectories were collected using Vicon motion analysis and force plate data from two Kistler force plates for 22 low-handicap golfers during drives. Golfers’ COG and COP were expressed as a percentage distance between their feet. PCA was performed on COG and COP in ML and AP directions. Relationships between principal component (PC) scores were examined using Pearson correlation and regression analysis used to examine the relationship with clubhead velocity. ML COP movements varied in magnitude (PC1), rate of change and timing (PC2 and PC3). The COP and COG PC1 scores were strongly correlated in both directions (ML: r?=?0.90, P?<?.05; AP: r?=?0.81, P?<?.05). Clubhead velocity, explained by three PCs (74%), related to timing and rate of change in COPML near downswing (PC2 and PC3) and timing of COGML late backswing (PC2). The relationship between COPML and COGML PC1 scores identified extremes of COP and COG patterns in golfers and could indicate a golfer’s dynamic balance. Golfers with earlier movement of COP to the front foot (PC2) and rate of change (PC3) patterns in ML COP, prior to the downswing, may be more likely to generate higher clubhead velocity.  相似文献   

20.
It has been suggested that conditioning programmes have the potential to improve golf performance through fitness adaptations. The primary aim of this systematic review was to evaluate the effectiveness of conditioning programmes on measures of golf-related fitness and golf performance. Four electronic library databases were searched and the quality of the studies was assessed using criteria adapted from the Consolidated Standard of Reporting Trials statement. Thirteen studies satisfied our criteria for inclusion. Nine studies involved middle-aged to older male recreational golfers and four studies used younger more skilled golfers. Conditioning programmes involved the use of machine weights, free weights, medicine balls, and elastic bands, and most studies included a flexibility component. Most studies assessed changes in fitness characteristics and generally resulted in improvements. All but two of the studies assessed changes in club head speed and reported increases. The findings from this review suggest that strength and conditioning programmes can have a positive effect on the golf swing and fitness characteristics of golfers. The majority of studies in this review evaluated the effects of generic conditioning programmes on fitness characteristics and club head speed. Future studies should investigate the effects of more golf-specific strength and conditioning programmes to improve fitness and overall golf performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号