首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysing the centre of pressure (COP) and centre of gravity (COG) could reveal stabilising strategies used by golfers throughout the golf swing. This study identified and compared golfers’ COP and COG patterns throughout the golf swing in medial–lateral (ML) and anterior–posterior (AP) directions using principal component analysis (PCA) and examined their relationship to clubhead velocity. Three-dimensional marker trajectories were collected using Vicon motion analysis and force plate data from two Kistler force plates for 22 low-handicap golfers during drives. Golfers’ COG and COP were expressed as a percentage distance between their feet. PCA was performed on COG and COP in ML and AP directions. Relationships between principal component (PC) scores were examined using Pearson correlation and regression analysis used to examine the relationship with clubhead velocity. ML COP movements varied in magnitude (PC1), rate of change and timing (PC2 and PC3). The COP and COG PC1 scores were strongly correlated in both directions (ML: r?=?0.90, P?<?.05; AP: r?=?0.81, P?<?.05). Clubhead velocity, explained by three PCs (74%), related to timing and rate of change in COPML near downswing (PC2 and PC3) and timing of COGML late backswing (PC2). The relationship between COPML and COGML PC1 scores identified extremes of COP and COG patterns in golfers and could indicate a golfer’s dynamic balance. Golfers with earlier movement of COP to the front foot (PC2) and rate of change (PC3) patterns in ML COP, prior to the downswing, may be more likely to generate higher clubhead velocity.  相似文献   

2.
目的:从生物力学角度探究声音反馈训练(teaching with acoustical guidance,TAGteachTM)和传统训练方法对高尔夫初学者击球效果和挥杆动作的影响。方法:21名无高尔夫训练基础的大学生受试者随机分为声音反馈训练组(clicker training group,CG,n=11)和传统训练组(traditional training group,TG,n=10),由一名韩国职业高尔夫教练员进行5周的高尔夫挥杆动作教学训练,使用7号铁杆。训练后,对受试进行挥杆动作生物力学测试,对比两组受试者的击球效果和挥杆动作。结果:5周声音反馈训练后,CG杆速、球速、杆面角度、击球距离等击球表现指标显著优于TG(P<0.01)。挥杆动作方面,CG从上杆阶段到随挥初期挥杆时间显著小于TG(P<0.05),骨盆转动速度显著大于TG(P<0.05);CG骨盆转动角度和COM-COP倾角的标准化角加速度变化率显著小于TG(P<0.05)。结论:声音反馈是一种有效的训练辅助手段,可提升高尔夫初学者的挥杆练习效果。  相似文献   

3.
Abstract

When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the “front foot” style or the “reverse” style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

4.
When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the "front foot" style or the "reverse" style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

5.
Weight transfer research in the golf swing has produced conflicting and inconclusive results. A limitation of previous studies is the assumption that only one swing "style" exists within the golf swing. If different styles, or movement strategies, exist and if the different styles are analysed together in a single group, statistical errors will result. The aim of this study was to determine if different weight transfer styles exist in the golf swing by applying cluster analysis to centre of pressure (CP) patterns in the direction of hit (CPy) and to evaluate cluster analysis issues. Sixty-two professional to high handicap golfers performed simulated drives, hitting a golf ball into a net, while standing on two force plates. Centre of pressure position relative to the feet (CPy%) was quantified at eight swing events identified from 200-Hz video. Cluster analysis identified two major CPy% styles: a "Front Foot" style and a "Reverse" style. Both styles began with CPy% positioned evenly between the feet, moved to the back foot during backswing, and then forward during early downswing. Beyond early downswing, the Front Foot group continued to move CPy% to the Front Foot through to ball contact, while the Reverse group moved CPy% towards the back foot through ball contact and follow-through. Both weight transfer styles were evident across skill levels from professional to high handicap golfers, indicating that neither style was a technical error. Cluster analysis should include hierarchical and non-hierarchical clustering and use objective measures combined with theoretical assessment to determine the optimal number of clusters. Furthermore, a number of validation procedures should always be used to validate the solution.  相似文献   

6.
Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

7.
Abstract

Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the “Front Foot” and “Reverse” styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

8.
Previously, forward dynamic models of the golf swing have been planar, two-dimensional (2D) representations. Research on live golfers has consistently demonstrated that the downswing is not planar. This paper introduces and evaluates the validity of a 3D six-segment forward dynamics model of a golfer. The model incorporates a flexible club shaft and a variable swing plane. A genetic algorithm was developed to optimise the coordination of the model’s mathematically represented muscles (torque generators) in order to maximise clubhead speed at impact. The kinematic and kinetic results confirmed previous findings on the proximal to distal sequencing of joints and the muscles powering those joints. The validity of the mathematical model was supported through comparisons of the model’s swing kinematics and kinetics with those of a live golfer.  相似文献   

9.
Teaching and playing professionals offer multiple theories concerning the manner in which forces should be applied to the handle of the club during the golf swing. This study extends recent research concerning grip pressures and forces in golf, with the purpose of exploring the similarities and differences between force profiles for a 7-iron and driver swung by proficient golfers. A secondary purpose was to further analyze the way that golfers use grip forces to manipulate the club. Grip forces were measured on eight low handicap golfers (USGA indexes 0 to 7) swinging their own 7-irons and drivers. In total, lead-hand and trail-hand grip forces were isolated as well as anatomically specific forces within the hands. Force profile variability across multiple swings for each golfer and between golfers characterized consistencies and important differences. Correlations between 7-iron and driver force profiles characterized force ‘signatures.’ The data highlight large fluctuations in grip forces during the swing. Marked differences between participants were observed, involving force magnitudes and phasing. Dominant forces arose primarily from the lead hand, specifically the last three fingers. Force profiles were highly repeatable across swings for a golfer (standard deviations < 7% of total force) and force profile correlations between 7-iron and driver for a golfer were remarkably high (r2 = 0.86). Notably, within swing force variability was greatest during club acceleration, but dramatically decreased at impact.  相似文献   

10.
The purposes of this study were to characterise the golfer–ground interactions during the swing and to identify meaningful associations between the golfer–ground interaction force/moment parameters and the maximum clubhead speed in 63 highly skilled male golfers (handicap ≤ 3). Golfers performed shots in 3 club conditions (driver, 5-iron and pitching wedge) which were captured by an optical motion capture system and 2 force plates. In addition to the ground reaction forces (GRFs), 3 different golfer–ground interaction moments (GRF moments, pivoting moments and foot contact moments) were computed. The GRF moment about the forward/backward (F/B) axis and the pivoting moment about the vertical axis were identified as the primary moments. Significant (p < 0.05) correlations of peak force parameters (all components in the lead foot and F/B component in the trail foot) and peak moment parameters (lead-foot GRF moment and trail-foot pivoting moment) to clubhead speed were found. The lead-foot was responsible for generating the GRF moment, while the trail foot contributed to the pivoting moment more. The instant the lead arm becomes parallel to the ground was identified as the point of maximum angular effort, and the loading onto the lead-foot near this point was critical in generating both peak moments.  相似文献   

11.
Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and trunk during golf downswings. Twenty-one right-handed male professional golfers were recruited for this study. Infrared cameras were installed to capture the swing motion. The axial rotation angle, angular velocity and inter-joint coordination were calculated by the Euler angle, numerical difference method and continuous relative phase, respectively. A more typical inter-joint coordination demonstrated in the leading hip/trunk than trailing hip/trunk. Three coordination characteristics of the leading hip/trunk reported a significant relationship with clubhead speed at impact (r < ?0.5) in male professional golfers. The increased rotation difference between the leading hip and trunk in the overall downswing phase as well as the faster rotation of the leading hip compared to that of the trunk in the early downswing play important roles in increasing clubhead speed. These novel inter-joint coordination strategies have the great potential to use a biomechanical guideline to improve the golf swing performance of unskilled golfers.  相似文献   

12.
In this study, we examined the influence of internal and external attention instructions on the performance of a pitch shot by golfers who were either highly skilled (mean handicap = 4) or low skilled (mean handicap = 26). Ten golfers in each skill group used a 9-iron to pitch a ball as close as possible to an orange pylon, which was located at distances of 10, 15, 20 or 25 m from the golfer. Focus of attention was manipulated within participants (counterbalanced across golfers). Under internal focus of attention instructions, the participants were told to concentrate on the form of the golf swing and to adjust the force of their swing depending on the distance of the shot. For the external focus of attention conditions, the participants were told to concentrate on hitting the ball as close to the target pylon as possible. The most intriguing finding was an interaction of skill with focus of attention instructions for variability in performance. Similar to the findings of Wulf and colleagues, the highly skilled golfers performed better with external attention instructions than with internal focus instructions. In contrast, the low-skill golfers performed better with the internal than with the external focus of attention instructions. These findings are discussed relative to theoretical issues in motor learning and practical issues for golf instruction.  相似文献   

13.
Abstract

Some golf equipment manufacturers produce matched sets of golf clubs using an empirical method based on first moments of mass as well as shaft stiffness, whereas others claim to match sets on the basis of moment of inertia and dynamic considerations of shaft stiffness. This paper considers the significance of the mass distribution feature of club matching with regard to the parameters relating to physical exertion by the golfer. It is shown that dynamic considerations require a mass variation through the set almost identical to the variation prescribed by static swing weighting, and that conventionally static balanced golf clubs differ in mass by less than five percent from that suggested using a dynamic balance. It is also shown that the maximum driving force is relatively the same for a specific golfer using a variety of golf clubs but that the driving forces of the professionals were higher than those recorded for the amateurs.  相似文献   

14.
The study investigated the coordination and variability of posture and pistol motion for skilled pistol shooters and novices in a pistol-aiming task. The participants stood on a force platform and held a pistol with the preferred arm to aim for accuracy to a target on 30 s trials. The results revealed that the amount of the centre of pressure (COP) and pistol motion was lower for the expert than novice group. The time–varying structure of COP as indexed by multiscale entropy (MSE) and detrended fluctuation analysis (DFA) was also lower for the expert than the novice group. The relative phase between the COP in the anterior–posterior (AP) and pistol in the AP and between the COP in the medial–lateral (ML) and pistol in AP was close to inphase for the both groups. However, for the novice group the coordination patterns of posture and pistol motion were more variable with the pistol motion leading the posture motion while it was lagging in the skilled group. The findings show different qualitative and quantitative dynamics in pistol-aiming as a function of skill level with postural control foundational to supporting the reduced dispersion and complexity of the skilled arm-pistol motion.  相似文献   

15.
The aim of this review was to determine how the findings of biomechanics and motor control/learning research may be used to improve golf performance. To be eligible, the biomechanics and motor learning studies had to use direct (ball displacement and shot accuracy) or indirect (clubhead velocity and clubface angle) golf performance outcome measures. Biomechanical studies suggested that reducing the radius path of the hands during the downswing, increasing wrist torque and/or range of motion, delaying wrist motion to late in the downswing, increasing downswing amplitude, improving sequential acceleration of body parts, improving weight transfer, and utilising X-factor stretch and physical conditioning programmes can improve clubhead velocity. Motor learning studies suggested that golf performance improved more when golfers focused on swing outcome or clubhead movement rather than specific body movements. A distributed practice approach involving multiple sessions per week of blocked, errorless practice may be best for improving putting accuracy of novice golfers, although variable practice may be better for skilled golfers. Video, verbal, or a combination of video and verbal feedback can increase mid-short iron distance in novice to mid-handicap (hcp) golfers. Coaches should not only continue to critique swing technique but also consider how the focus, structure, and types of feedback for practice may alter learning for different groups of golfers.  相似文献   

16.
The golfer’s body (trunk/arms/club) can be modeled as an inclined axle-chain system and the rotations of its parts observed on the functional swing plane (FSP) can represent the actual angular motions closely. The purpose of this study was to investigate the effects of pelvis-shoulders torsional separation style on the kinematic sequences employed by the axle-chain system in golf driving. Seventy-four male skilled golfers (handicap ≤ 3) were assigned to five groups based on their shoulder girdle motion and X-factor stretch characteristics: Late Shoulder Acceleration, Large Downswing Stretch, Large Backswing Stretch, Medium Total Stretch, and Small Total Stretch. Swing trials were captured by an optical system and the hip-line, thorax, shoulder-line, upper-lever, club, and wrist angular positions/velocities were calculated on the FSP. Kinematic sequences were established based on the timings of the peak angular velocities (backswing and downswing sequences) and the backswing-to-downswing transition time points (transition sequence). The backswing and transition sequences were somewhat consistent across the groups, showing full or partial proximal-to-distal sequences with minor variations. The downswing sequence was inconsistent across the groups and the angular velocity peaks of the body segments were not significantly separated. Various swing characteristics associated with the separation styles influenced the motion sequences.  相似文献   

17.
A common belief in the golf community is that a lighter shaft allows the golfer to swing the club faster. From a mechanical point of view, reducing the mass of the shaft would result in a faster swing. However, a golfer is not a purely mechanical system, and so it is simplistic to assume that identical loads will be applied when swinging different clubs. Therefore, the purpose of this study was to test the hypothesis that golfers behave similar to a mechanical model when swinging clubs of varying mass. A torque driven model estimated the effects caused by the addition of 22?g to the shaft. Twelve golfers hit balls with a standard driver as well as a driver fitted with the same 22?g increase in mass. Club kinematics were collected with a high-speed motion capture system. The model predicted a 1.7?% lower club head speed for the club with additional mass. One subject showed a similar reduction (1.4?%), but one subject showed an increase in club head speed by 3.0?%. Ten subjects did not show any significant differences. These results suggest that golfers do not respond to changes in club mass in a mechanically predictable way.  相似文献   

18.
Weight transfer has been identified as important in group-based analyses. The aim of this study was to extend this work by examining the importance of weight transfer in the golf swing on an individual basis. Five professional and amateur golfers performed 50 swings with the driver, hitting a ball into a net. The golfer's centre of pressure position and velocity, parallel with the line of shot, were measured by two force plates at eight swing events that were identified from high-speed video. The relationships between these parameters and club head velocity at ball contact were examined using regression statistics. The results did support the use of group-based analysis, with all golfers returning significant relationships. However, results were also individual-specific, with golfers returning different combinations of significant factors. Furthermore, factors not identified in group-based analysis were significant on an individual basis. The most consistent relationship was a larger weight transfer range associated with a larger club head velocity (p < 0.05). All golfers also returned at least one significant relationship with rate of weight transfer at swing events (p < 0.01). Individual-based analysis should form part of performance-based biomechanical analysis of sporting skills.  相似文献   

19.
Biomechanical understanding of the knee joint during a golf swing is essential to improve performance and prevent injury. In this study, we quantified the flexion/extension angle and moment as the primary knee movement, and evaluated quasi-stiffness represented by moment–angle coupling in the knee joint. Eighteen skilled and 23 unskilled golfers participated in this study. Six infrared cameras and two force platforms were used to record a swing motion. The anatomical angle and moment were calculated from kinematic and kinetic models, and quasi-stiffness of the knee joint was determined as an instantaneous slope of moment–angle curves. The lead knee of the skilled group had decreased resistance duration compared with the unskilled group (P < 0.05), and the resistance duration of the lead knee was lower than that of the trail knee in the skilled group (P < 0.01). The lead knee of the skilled golfers had greater flexible excursion duration than the trail knee of the skilled golfers, and of both the lead and trail knees of the unskilled golfers. These results provide critical information for preventing knee injuries during a golf swing and developing rehabilitation strategies following surgery.  相似文献   

20.
The purposes of this study were (1) to determine the functional swing plane (FSP) of the clubhead and the motion planes (MPs) of the shoulder/arm points and (2) to assess planarity of the golf swing based on the FSP and the MPs. The swing motions of 14 male skilled golfers (mean handicap = -0.5 +/- 2.0) using three different clubs (driver, 5-iron, and pitching wedge) were captured by an optical motion capture system (250Hz). The FSP and MPs along with their slope/relative inclination and direction/direction of inclination were obtained using a new trajectory-plane fitting method. The slope and direction of the FSP revealed a significant club effect (p < 0.001). The relative inclination and direction of inclination of the MP showed significant point (p < 0.001) and club (p < 0.001) effects and interaction (p < 0.001). Maximum deviations of the points from the FSP revealed a significant point effect (p < 0.001) and point-club interaction (p < 0.001). It was concluded that skilled golfers exhibited well-defined and consistent FSP and MPs, and the shoulder/arm points moved on vastly different MPs and exhibited large deviations from the FSP. Skilled golfers in general exhibited semi-planar downswings with two distinct phases: a transition phase and a planar execution phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号