首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Altogether, 100 uninjured professional rugby league players were evaluated over a 2-year period. Their height, body mass, sum of skinfolds, girths and bone diameters were recorded. A Cybex 340 isokinetic dynamometer was used to determine peak torque, work, power, endurance ratios and peak torque ratios of the hip abductors and adductors (5 repetitions at 0.52 and 2.08 rad. s(- 1); 20 repetitions at 3.66 rad. s(- 1)) and knee flexors and extensors (4 repetitions at 1.04 and 3.14 rad. s(- 1); 30 repetitions at 5.22 rad. s(- 1)). Hip abduction and adduction were also assessed with the hip in external rotation. Discriminant function analysis was conducted on all predictor variables to develop a multivariate predictive model capable of classifying players with a high degree of accuracy into groups with and without a groin injury. The model consisted of eight variables and correctly classified 91.7% of the non-injured players and 90.5% of the injured players. The correct classification for the model as a whole was 91.4%. The aetiological factors identified as being related to injury of the groin musculotendinous unit included abduction and adduction-with-rotation peak torque, angle of adduction and abduction-with-rotation peak torque, strength ratio of hip muscle groups, bilateral difference in extension peak torque, femur diameter and body mass.  相似文献   

2.
Abstract

Hip adduction strength is important for kicking and acceleration in soccer players. Changes in hip adduction strength may therefore have an effect on soccer players’ athletic performance. The purpose of this study was to investigate the acute and sub-acute effects of a kicking drill session on hip strength, concerning isometric hip adduction, abduction and flexion torque of the kicking leg and the supporting leg. Ten injury-free male elite soccer players, mean ± s age of 15.8 ± 0.4 years participated. All players underwent a specific 20 min kicking drill session, comprising 45 kicks. The players were tested the day before, 15 min after and 24 h after the kicking drill session by a blinded tester using a reliable test procedure. The isometric hip-action and leg-order were randomized. For the kicking leg, hip adduction torque increased from 2.45 (2.19–2.65) Nm ? kg?1, median (25th–75th percentiles), at pre-kicking to 2.65 (2.55–2.81) Nm ? kg?1 (P = 0.024) 24 h post-kicking. This may have implications for the soccer player’s ability to maximally activate the hip adductors during kicking and acceleration, and thereby improve performance the day after a kicking drill session.  相似文献   

3.
Fatigue represents a reduction in the capability of muscle to generate force. The aim of the present study was to establish the effects of exercise that simulates the work rate of competitive soccer players on the strength of the knee extensors and knee flexors. Thirteen amateur soccer players (age 23.3±3.9 years, height 1.78±0.05?m, body mass 74.8±3.6?kg; mean±s) were tested during the 2000–2001 soccer season. Muscle strength of the quadriceps and hamstrings was measured on an isokinetic dynamometer. A 90?min soccer-specific intermittent exercise protocol, incorporating a 15?min half-time intermission, was developed to provide fatiguing exercise corresponding in work rate to a game of soccer. The exercise protocol, performed on a programmable motorized treadmill, consisted of the different intensities observed during soccer match-play (e.g. walking, jogging, running, sprinting). Muscle strength was assessed before exercise, at half-time and immediately after exercise. A repeated-measures analysis of variance showed significant reductions (P?<0.001) in peak torque for both the quadriceps and hamstrings at all angular velocities (concentric: 1.05, 2.09, 5.23 rad?·?s?1; eccentric: 2.09 rad?·?s?1). The peak torque of the knee extensors (KE) and knee flexors (KF) was greater before exercise [KE: 232±37, 182±34, 129±27, 219±41?N?·?m at 1.05, 2.09 and 5.23 rad?·?s?1 (concentric) and 2.09 rad?·?s?1 (eccentric), respectively; KF: 126±20, 112±19, 101±16, 137±23?N?·?m] than at half-time (KE: 209±45, 177±35, 125±36, 214±43?N?·?m; KF: 114±31, 102±20, 92±15, 125±25?N?·?m) and greater at half-time than after exercise (KE: 196±43, 167±35, 118±24, 204±43?N?·?m; KF: 104±25, 95±21, 87±13, 114±27?N?·?m). For the hamstrings?:?quadriceps ratio, significant changes were found (P?<0.05) for both legs, the ratio being greater before than after exercise. For fast?:?slow speed and left?:?right ratios, no significant changes were found. We conclude that there is a progressive reduction in muscle strength that applies across a range of functional characteristics during exercise that mimics the work rate in soccer.  相似文献   

4.
Abstract

The purpose of this study was to investigate the eccentric torque–velocity and power–velocity relationships of the elbow flexors. Forty recreationally trained individuals (20 men, 20 women) performed maximal eccentric actions at each of five different velocities (1.04 rad · s?1, 2.09 rad · s?1, 3.14 rad · s?1, 4.18 rad · s?1, and 5.23 rad · s?1, in random order) and maximal isometric actions on a Biodex isokinetic dynamometer. A 2×6 (sex×velocity) mixed-factor repeated-measures analysis of variance (ANOVA) was used to assess peak elbow flexor torque during the eccentric and isometric actions. There was no interaction, but there were significant main effects for sex and velocity. Pairwise comparisons demonstrated that values for men were significantly (P<0.05) higher than those for women at all speeds. Furthermore, torques for both sexes were significantly less at 3.14 rad · s?1 (men: 103.94±28.28 N · m; women: 49.24±11.69 N · m) than at 4.18 rad · s?1 (men: 106.39±30.23 N · m; women: 52.77±11.31 N · m) and 5.23 rad · s?1 (men: 108.75±28.59 N · m; women: 53.3±11.67 N · m), while isometric torque was significantly less than at all other speeds (men: 98.66±28.0 N · m; women: 45.25±11.15 N · m). A 2×5 (sex×velocity) mixed-factor repeated-measures ANOVA was used to assess peak eccentric elbow flexor power. There were significant main effects for sex and velocity. Pairwise comparisons demonstrated that values for men were significantly higher than those for women at all speeds. Pairwise comparisons for velocity indicated that peak eccentric power increased across all speeds from 1.04 rad · s?1 (men: 110.44±32.56 W; women 54.36±13.05 W) to 5.23 rad · s?1 (men: 569.46±149.73 W; women: 279.10±61.10 W). These results demonstrate that an increase in velocity had little or no effect on eccentric elbow flexor torque, while eccentric elbow flexor power increased significantly with increases in velocity.  相似文献   

5.
This study aimed to assess the effects of core stability training on lower limbs’ muscular asymmetries and imbalances in team sport. Twenty footballers were divided into two groups, either core stability or control group. Before each daily practice, core stability group (= 10) performed a core stability training programme, while control group (= 10) did a standard warm-up. The effects of the core stability training programme were assessed by performing isokinetic tests and single-leg countermovement jumps. Significant improvement was found for knee extensors peak torque at 3.14 rad · s?1 (14%; < 0.05), knee flexors peak torque at 1.05 and 3.14 rad · s?1 (19% and 22% with < 0.01 and < 0.01, respectively) and peak torque flexors/extensors ratios at 1.05 and 3.14 rad · s?1 (7.7% and 8.5% with < 0.05 and < 0.05, respectively) only in the core stability group. The jump tests showed a significant reduction in the strength asymmetries in core stability group (?71.4%; = 0.02) while a concurrent increase was seen in the control group (33.3%; < 0.05). This study provides practical evidence in combining core exercises for optimal lower limbs strength balance development in young soccer players.  相似文献   

6.
Abstract

This study was undertaken to examine the acute effect of interferential current on mechanical pain threshold and isometric peak torque after delayed onset muscle soreness induction in human hamstrings. Forty-one physically active healthy male volunteers aged 18?33 years were randomly assigned to one of two experimental groups: interferential current group (n = 21) or placebo group (n = 20). Both groups performed a bout of 100 isokinetic eccentric maximal voluntary contractions (10 sets of 10 repetitions) at an angular velocity of 1.05 rad · s?1 (60° · s?1) to induce muscle soreness. On the next day, volunteers received either an interferential current or a placebo application. Treatment was applied for 30 minutes (4 kHz frequency; 125 μs pulse duration; 80?150 Hz bursts). Mechanical pain threshold and isometric peak torque were measured at four different time intervals: prior to induction of muscle soreness, immediately following muscle soreness induction, on the next day after muscle soreness induction, and immediately after the interferential current and placebo application. Both groups showed a reduction in isometric torque (P < 0.001) and pain threshold (P < 0.001) after the eccentric exercise. After treatment, only the interferential current group showed a significant increase in pain threshold (P = 0.002) with no changes in isometric torque. The results indicate that interferential current was effective in increasing hamstrings mechanical pain threshold after eccentric exercise, with no effect on isometric peak torque after treatment.  相似文献   

7.
Abstract

Elite badminton requires muscular endurance combined with appropriate maximal and explosive muscle strength. The musculature of the lower extremities is especially important in this context since rapid and forceful movements with the weight of the body are performed repeatedly throughout a match. In the present study, we examined various leg-strength parameters of 35 male elite badminton players who had been performing resistance exercises as part of their physical training for several years. The badminton players were compared with an age-matched reference group, the members of whom were physically active on a recreational basis, and to the same reference group after they had performed resistance training for 14 weeks. Maximal muscle strength of the knee extensor (quadriceps) and flexor muscles (hamstrings) was determined using isokinetic dynamometry. To measure explosive muscle strength, the contractile rate of force development was determined during maximal isometric muscle contractions. In general, the badminton players showed greater maximal muscle strength and contractile rate of force development than the reference group: mean quadriceps peak torque during slow concentric contraction: 3.69 Nm · kg?1, s=0.08 vs. 3.26 Nm · kg?1, s=0.8 (P<0.001); mean hamstring peak torque during slow concentric contraction: 1.86 Nm · kg?1, s=0.04 vs. 1.63 Nm · kg?1, s=0.04 (P<0.001); mean quadriceps rate of force development at 100 ms: 24.4 Nm · s?1·kg?1, s=0.5 vs. 22.1 Nm·s?1 · kg?1, s=0.6 (P<0.05); mean hamstring rate of force development at 100 ms: 11.4 Nm · s?1·kg?1, s=0.3 vs. 8.9 Nm · s?1 · kg?1, s=0.4 (P<0.05). However, after 14 weeks of resistance training the reference group achieved similar isometric and slow concentric muscle strength as the badminton players, although the badminton players still had a higher isometric rate of force development and muscle strength during fast (240° · s?1) quadriceps contractions. Large volumes of concurrent endurance training could have attenuated the long-term development of maximal muscle strength in the badminton players. The badminton players had a higher contractile rate of force development than the reference group before and after resistance training. Greater explosive muscle strength in the badminton players might be a physiological adaptation to their badminton training.  相似文献   

8.
Abstract

The aim of the present study was to examine the relationships between muscle cross-sectional area (CSA) and muscular strength in terms of knee extension and flexion, hip extension and flexion, and hip abduction and adduction among well-trained soccer players. Fourteen university soccer players participated in the study, who had previously been divided into two groups based on ability (Group A: above-average ability; Group B: average ability). Maximal isokinetic and concentric muscular strength was measured in knee extension/flexion, hip extension/flexion and hip abduction/adduction using an isokinetic dynamometer at 1.57 and 4.19 rad·s?1 (3.14 rad·s?1) in both the dominant and non-dominant leg. The CSAs of the thigh, gluteus muscles and iliopsoas muscles were calculated based on magnetic resonance imaging. There was no significant difference between the two groups in muscle CSA and isokinetic strength. Although there were some statistically significant differences between the dominant and non-dominant leg in terms of CSA and strength (P<0.05–0.01), these were small and negligible. Apart from a non-significant relationship between the CSAs of the adductor muscles and hip adductor strength (r<0.26, n.s.), the CSA of the other muscle groups correlated with maximal isokinetic strength (r=0.38–0.64, P<0.05). These results suggest that no difference in muscle characteristics (in terms of muscle CSA and strength) was apparent among well-trained soccer players, even between the dominant and non-dominant leg. There is also a case that the anatomical function of a single (or group of) muscle(s) may not be reflected by the strength—CSA relationship depending on the movements (such as hip adduction-adductor muscle CSA). Thus, further studies are required to develop methods to assess neuromuscular function in relation to muscle morphology among soccer players.  相似文献   

9.
10.
Abstract

We compared starters and non-starters for various isokinetic strength variables in elite women’s soccer players. A convenience sample of 10 starters (mean ± s; age = 20 ± 2 years; height = 170 ± 4 cm; body mass = 65 ± 5 kg) and 7 non-starters (age = 20 ± 1 years; height = 164 ± 3 cm; body mass = 63 ± 4 kg) performed maximal voluntary muscle actions of the leg extensors (concentric) and flexors (eccentric) on an isokinetic dynamometer in order to measure concentric peak torque for the leg extensors, eccentric peak torque for the leg flexors, and the functional hamstrings:quadriceps (H:Q) ratio at 1.047 rad · s-1 and 4.189 rad · s-1 concentric peak torque for the leg extensors was not different between starters and non-starters. However, it was greater at 1.047 rad · s-1 than at 4.189 rad · s-1 in both groups. Eccentric peak torque for the leg flexors was greater for the starters versus non-starters at 4.189 rad · s-1. Eccentric strength of the leg flexors at fast movement velocities may be used as an effective physiological profile and may discriminate between playing status in elite women’s soccer players.  相似文献   

11.
The objective of this study was to identify biomechanical predictors for accuracy and speed of the wrist shot in floorball, comparing two different starting feet positions.

Ten floorball players performed 2 series of 10 stationary wrist shots, in 2 different positions (feet at a right angle to the end of the stick, oriented towards a target and feet parallel to the end of the stick and to the target). A 12-camera motion capture system, tracking reflective markers on key landmarks, was used to record participant and stick kinematics. Accuracy of the shot was quantified by distance of impact from target centre. Player gaze was approximated from head position.

Shot accuracy was significantly better (0.007) when feet were at right angle (0.22 [0.14] m) than when they were parallel (0.27 [0.20] m). Ball speed was no significantly different (P = 0.485) between the right angle position (23.50 [17.52] m · s?1) and the parallel position (23.50 [17.95] m · s?1). Between self-selected position and imposed position, there was no significant difference. Players looking at the target during shooting had greater accuracy. Regression models suggested that ball speed was mainly influenced, in both positions, by the flexion of the supporting leg (ankle, knee and hip), by the rotation of the hip and of the trunk, especially for the spine angles, and by the rotation and abduction–adduction movements of the wrist of the hand on the top of the stick. The comparison between players showed important differences in these technical skills.  相似文献   

12.
Abstract

The aim of the present study was to investigate the patterns of shoulder muscle activation and joint torques during maximal effort eccentric contractions with shoulder extension, abduction, and diagonal movements on the isokinetic device. Participants in this investigation were nine men and four women with no history of shoulder injury or disorders. They all participated in overhead sports at least three days a week, and volunteered to participate in this study for shoulder isokinetic muscle strength testing. They performed eccentric muscle action with shoulder flexion, abduction, and diagonal movements at velocities of 60 rad·s?1 and 180 rad· s?1, which was followed alternately by passive shoulder flexion, abduction and diagonal movement at a velocity of 30 rad· s?1, and total range of motion was standardised to 90°. Electromyography (EMG) and torque values were calculated to every 10°, except for the start and end 5° during each task. During each test, the isokinetic force output and muscle activation were synchronised. EMG data were normalised by percentage of maximum voluntary isometric contraction (%MVIC). EMG signals were recorded by surface EMG from the anterior deltoid (AD), middle deltoid (MD), posterior deltoid (PD), upper trapezius (UT), middle trapezius (MT), and biceps brachii (BB) muscles during this test. All of the muscle patterns were significantly decreased at the last compared with the initial part during eccentric shoulder flexion movement, except for the BB muscle (P < 0.05). AD and BB muscles played a similar role when peak torque was generated under load during eccentric muscle action with varying shoulder movements. PD and UT muscle activities were significantly lower than the other muscle activities during eccentric contraction with shoulder flexion and abduction movements, and the PD and UT muscles played a significant role in conjunction with MD and MT muscles in varying degrees during eccentric contraction with shoulder diagonal movements at 180 rad·s?1 (P < 0.05). Our study demonstrated that MT muscle activity was greatly influenced when torque values showed a peak moment under load during maximum effort, eccentric contraction with shoulder abduction and diagonal movements. However, the MD, PD, UT, and MT muscle activities had no great influence when peak torque was generated under load during eccentric muscle action with shoulder diagonal movement at high velocity. The present study suggested that varying eccentric muscle activity patterns may be needed to investigate proper training and functional contributions of upper extremity muscles to stabilisation of the shoulder joint when peak torque was generated under load.  相似文献   

13.
ABSTRACT

The aim of this study was to investigate the kinetic functions of the lower limbs at different hitting-point heights to provide key information for improving batting technique in baseball players. Three-dimensional coordinate data were acquired using a motion capture system (250 Hz) and ground reaction forces were measured using three force platforms (1000 Hz) in 22 male collegiate baseball players during tee-batting set at three different hitting-point heights (high, middle, and low). Kinetic data were used to calculate joint torque and mechanical work in the lower limbs by the inverse dynamics approach. The peak angular velocity of the lower trunk about the vertical axis was smaller under the low condition. The joint torques and mechanical works done by both hip adduction/abduction axes were different among the three conditions. These results indicate that hip adduction/abduction torques mainly contribute to a change in the rotational movement of the lower body about the vertical axis when adjusting for different hitting-point heights. In order to adjust for the low hitting-point height which would be difficult compared with other hitting-point heights, batters should focus on rotating the lower trunk slowly by increasing both hip abduction torques.  相似文献   

14.
Abstract

In this study, we compared the isokinetic torques of hip flexors/extensors and abductors/adductors in soccer players suffering from osteitis pubis (OP), with normal soccer players. Twenty soccer male athletes with OP and 20 normal soccer athletes were included in this study. Peak torque/body weight (PT/BW) was recorded from hip flexor/extensor and abductor/adductor muscles during isokinetic concentric contraction modes at angular velocity of 2.1 rad · s?1, for both groups. The results showed a significant difference between the normal and OP groups for hip flexors (< 0.05). The normal group had significant, lower PT/BW value than the OP group for their hip flexors (< 0.05). The hip flexor/extensor PT ratio of OP affected and non-affected limbs was significantly different from that of normal dominant and non-dominant limbs. There were no significant differences between the normal and OP groups for hip extensor, adductor and abductor muscles (> 0.05). Regarding the hip adductor/abductor PT ratio, there was no significant difference between the normal and OP groups of athletes (> 0.05). The OP group displayed increase in hip flexor strength that disturbed the hip flexor/extensor torque ratio of OP. Therefore, increasing the hip extensor strength should be part of rehabilitation programmes of patients with OP.  相似文献   

15.
The aim of this study was to analyse the characteristics of the asymmetries in the dominant and non-dominant limbs when kicking stationary and rolling balls. Ten experienced Brazilian amateur futsal players participated in this study. Each participant performed kicks under two conditions (stationary ball vs. rolling ball) with the dominant and non-dominant limbs (five kicks per condition per limb). We analysed the kicking accuracy, ball and foot velocities, angular joint displacement and velocity. The asymmetry between the dominant and non-dominant limbs was analysed by symmetry index and two-way repeated measures ANOVA. The results did not reveal any interaction between the condition and limb for ball velocity, foot velocity and accuracy. However, kicking with the dominant limb in both kicks showed higher ball velocity (stationary ball: dominant – 24.27 ± 2.21 m · s?1 and non-dominant – 21.62 ± 2.26 m · s?1; rolling ball: dominant – 23.88 ± 2.71 m · s?1 and non-dominant – 21.42 ± 2.25 m · s?1), foot velocity (stationary ball: dominant – 17.61 ± 1.87 m · s?1 and non-dominant – 15.58 ± 2.69 m · s?1; rolling ball: dominant – 17.25 ± 2.26 m · s?1 and non-dominant – 14.77 ± 2.35 m · s?1) and accuracy (stationary ball: dominant – 1.17 ± 0.84 m and non-dominant – 1.56 ± 1.30 m; rolling ball: dominant – 1.31 ± 0.91 m and non-dominant – 1.97 ± 1.44 m). In addition, the angular joint adjustments were dependent on the limb in both kicks (the kicks with non-dominant limb showed lower hip external rotation than the kicks with the dominant limb), indicating that the hip joint is important in kick performance. In conclusion, the kicks with the non-dominant limb showed different angular adjustments in comparison to kicks with the dominant limb. In addition, kicking a rolling ball with the non-dominant limb showed higher asymmetry for accuracy, indicating that complex kicks are more asymmetric.  相似文献   

16.
Abstract

In this study, we evaluated the peak torque, functional torque ratios, and torque curve profile of the shoulder rotators in overhead athletes with impingement symptoms so as to examine possible alterations in response to sports training and shoulder pain. Twenty-one overhead athletes with impingement symptoms were compared with 25 overhead athletes and 21 non-athletes, none of whom were symptomatic for impingement. The participants performed five maximal isokinetic concentric and eccentric contractions of medial and lateral shoulder rotations at 1.57 rad · s?1 and 3.14 rad · s?1. Isokinetic peak torque was used to calculate the eccentric lateral rotation-to-concentric medial rotation and the eccentric medial rotation-to-concentric lateral rotation ratios. An analysis of the torque curve profiles was also carried out. The eccentric lateral rotation-to-concentric medial rotation torque ratio of asymptomatic athletes was lower than that of non-athletes at both test velocities. The concentric medial rotation isokinetic peak torque of the asymptomatic athletes, at 3.14 rad · s?1, was greater than that of the non-athletes, and the peak appeared to occur earlier in the movement for athletes than non-athletes. These findings suggest that there may be adaptations to shoulder function in response to throwing practice. The eccentric medial rotation-to-concentric lateral rotation torque ratio was altered neither by the practice of university-level overhead sports nor impingement symptoms.  相似文献   

17.
Abstract

The aims of this study were to examine the acute effects of static stretching on peak torque, work, the joint angle at peak torque, acceleration time, isokinetic range of motion, mechanomyographic amplitude, and electromyographic amplitude of the rectus femoris during maximal concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1 in men and women. Ten women (mean ± s: age 23.0 ± 2.9 years, stature 1.61 ± 0.12 m, mass 63.3 ± 9.9 kg) and eight men (age 21.4 ± 3.0 years, stature 1.83 ± 0.11 m, mass 83.1 ± 15.2 kg) performed maximal voluntary concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1. Following the initial isokinetic tests, the dominant leg extensors were stretched using four static stretching exercises. After the stretching, the isokinetic tests were repeated. Peak torque, acceleration time, and electromyographic amplitude decreased (P≤ 0.05) from pre- to post-stretching at 1.04 and 5.23 rad · s?1; there were no changes (P > 0.05) in work, joint angle at peak torque, isokinetic range of motion, or mechanomyographic amplitude. These findings indicate no stretching-related changes in the area under the angle – torque curve (work), but a significant decrease in peak torque, which suggests that static stretching may cause a “flattening” of the angle – torque curve that reduces peak strength but allows for greater force production at other joint angles. These findings, in conjunction with the increased limb acceleration rates (decreased acceleration time) observed in the present study, provide tentative support for the hypothesis that static stretching alters the angle – torque relationship and/or sarcomere shortening velocity.  相似文献   

18.
ABSTRACT

The optimal scheduling of Nordic Hamstring exercises (NHEs) relative to football training sessions is unknown. We examined the acute neuromuscular and performance responses to NHE undertaken either before (BT) or after (AT) simulated football training. Twelve amateur players performed six sets of five repetitions of the NHE either before or after 60 min of standardised football-specific exercise (SAFT60). Surface electromyography signals (EMG) of the hamstring muscles were recorded during both the NHE, and maximum eccentric actions of the knee flexors (0.52 rad · s–1) performed before and after the NHE programme, and at 15 min intervals during SAFT60. Ten-metre sprint times were recorded on three occasions during each 15 min SAFT60 segment. Greater eccentric hamstring fatigue following the NHE programme was observed in BT versus AT (19.8 %; very likely small effect), which was particularly apparent in the latter range of knee flexion (0–15°; 39.6%; likely moderate effect), and synonymous with hamstring EMG declines (likely small–likely moderate effects). Performing NHE BT attenuated sprint performance declines (2.0–3.2%; likely small effects), but decreased eccentric hamstring peak torque (–14.1 to –18.9%; likely small effects) during football-specific exercise. Performing NHE prior to football training reduces eccentric hamstring strength and may exacerbate hamstring injury risk.  相似文献   

19.
Abstract

The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake ([Vdot]O2max) and distance travelled with peak oxygen uptake ([Vdot]O2peak) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine [Vdot]O2peak, and the MSFT on an indoor wooden basketball court. Mean ergometer [Vdot]O2peak was 2.66 litres · min?1 (s = 0.49) and peak heart rate was 188 beats · min?1 (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats · min?1 (s = 11). Low to moderate correlations (ρ = 0.39 to 0.58; 95% confidence interval [CI]: ?0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer [Vdot]O2peak. There was a mean bias of ?1.9 beats · min?1 (95% CI: ?5.9 to 2.0) and standard error of measurement of 6.6 beats · min?1 (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT [Vdot]O2peak values revealed a large mean systematic bias of 15.3 ml · kg?1 · min?1 (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml · kg?1 · min?1 (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats · min?1; 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号