首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory muscle fatigue has been reported following short bouts of high-intensity exercise, and prolonged, moderate-intensity exercise, as evidenced by decrements in inspiratory and expiratory mouth pressures. However, links to functionally relevant outcomes such as breathing effort have been lacking. The present study examined dyspnoea and leg fatigue during a treadmill marathon in nine experienced runners. Maximal inspiratory and expiratory pressure, peak inspiratory and expiratory flow, forced vital capacity, and forced expiratory volume in one second were assessed before, immediately after, and four and 24 hours after a marathon. During the run, leg effort was rated higher than respiratory effort from 18 through 42 km (P < 0.05). Immediately after the marathon, there were significant decreases in maximal inspiratory pressure and peak inspiratory flow (from 118 +/- 20 cm H(2)O and 6.3 +/- 1.4 litres x s(-1) to 100 +/- 22 cm H(2)O and 4.9 +/- 1.5 litres x s(-1) respectively; P < 0.01), while expiratory function remained unchanged. Leg maximum voluntary contraction force was significantly lower post-marathon. Breathing effort correlated significantly with leg fatigue (r = 0.69), but not inspiratory muscle fatigue. Our results confirm that prolonged moderate-intensity exercise induces inspiratory muscle fatigue. Furthermore, they suggest that the relative intensity of inspiratory muscle work during exercise makes some contribution to leg fatigue.  相似文献   

2.
Abstract

In this study, we examine the effect of exercise on the time and flow characteristics of the respiratory cycle profile at the point of volitional exercise termination. Eight males (mean age 29 years, s = 10; body mass 74 kg, s = 7; height 1.75 m, s = 0.04) undertook a cycle test to volitional exhaustion on a cycle ergometer, which allowed peak oxygen uptake ([Vdot]O2peak) to be measured (mean 51 ml · kg?1 · min?1, s = 7). At a later date, two sub-maximal tests to volitional exhaustion were completed in a random order at 76% (s = 6) and 86%[Vdot]O2peak (s = 7). As expected, the magnitude of the respiratory flow and time characteristics varied with the three exercise intensities, as did the point of exercise termination and terminal ventilation rates, which varied from 7 to 27 min and 112 to 132 litres · min?1 respectively. More importantly, however, at exercise termination some of the characteristics were similar, particularly the breathing frequency (at termination 49 breaths · min?1), the ratio between inspiration and total breath time (0.5), and the later occurrence of peak inspiratory flow (0.24 – 0.48 s). The coincident unity of these time and flow profile characteristics at exercise termination illustrates how the integration of timing and flow during breathing influence exercise capacity in non-elite athletes.  相似文献   

3.
Abstract

The determination of the ventilatory threshold has been a persistent problem in research and clinical practice. Several computerized methods have been developed to overcome the subjectivity of visual methods but it remains unclear whether different computerized methods yield similar results. The purpose of this study was to compare nine regression-based computerized methods for the determination of the ventilatory threshold. Two samples of young and healthy volunteers (n = 30 each) participated in incremental treadmill protocols to volitional fatigue. The ventilatory data were averaged in 20-s segments and analysed with a computer program. Significant variance among methods was found in both samples (Sample 1: F = 11.50; Sample 2: F = 11.70, P < 0.001 for both). The estimates of the ventilatory threshold ranged from 2.47 litres · min?1 (71%[Vdot]O2max) to 3.13 litres · min?1 (90%[Vdot]O2max) in Sample 1 and from 2.37 litres · min?1 (67%[Vdot]O2max) to 3.03 litres · min?1 (83%[Vdot]O2max) in Sample 2. The substantial differences between methods challenge the practice of relying on any single computerized method. A standardized protocol, likely based on a combination of methods, might be necessary to increase the methodological consistency in both research and clinical practice.  相似文献   

4.
Abstract

We compared starters and non-starters for various isokinetic strength variables in elite women’s soccer players. A convenience sample of 10 starters (mean ± s; age = 20 ± 2 years; height = 170 ± 4 cm; body mass = 65 ± 5 kg) and 7 non-starters (age = 20 ± 1 years; height = 164 ± 3 cm; body mass = 63 ± 4 kg) performed maximal voluntary muscle actions of the leg extensors (concentric) and flexors (eccentric) on an isokinetic dynamometer in order to measure concentric peak torque for the leg extensors, eccentric peak torque for the leg flexors, and the functional hamstrings:quadriceps (H:Q) ratio at 1.047 rad · s-1 and 4.189 rad · s-1 concentric peak torque for the leg extensors was not different between starters and non-starters. However, it was greater at 1.047 rad · s-1 than at 4.189 rad · s-1 in both groups. Eccentric peak torque for the leg flexors was greater for the starters versus non-starters at 4.189 rad · s-1. Eccentric strength of the leg flexors at fast movement velocities may be used as an effective physiological profile and may discriminate between playing status in elite women’s soccer players.  相似文献   

5.
Abstract

Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption ([Vdot]O2) determined every 15 s. The mean (± s) time-trial time was 359 ± 33 s, with a mean power output of 65 ± 16 W and mean stroke rate of 56 ± 4 strokes · min?1. Mean values for peak [Vdot]O2, peak heart rate, and mean heart rate were 3.17 ± 0.67 litres · min?1, 177 ± 11 beats · min?1, and 164 ± 12 beats · min?1 respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak [Vdot]O2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

6.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

7.
Inspiratory muscle fatigue may occur in as little as 6 min during high-intensity spontaneously breathing exercise. The aims of this study were to determine whether inspiratory muscle fatigue occurs during swimming exercise and whether inspiratory muscle strength differs between the supine and standing body positions. Seven competitive swimmers were recruited to perform a single 200 m front-crawl swim, corresponding to 90-95% of race pace. Inspiratory muscle strength was measured at residual volume using a hand-held mouth pressure meter that measured maximal inspiratory pressure in the upright and supine positions. At baseline, maximal inspiratory pressure in the supine position was significantly lower than maximal inspiratory pressure in the upright position (112±20.4 and 133±16.7 cmH2O, respectively; P?0.01). Post-exercise maximal inspiratory pressure in the supine position (80±15.7 cmH2O) was significantly lower than baseline maximal inspiratory pressure in the supine position (P?0.01). The results indicate that a single 200 m front-crawl swim corresponding to 90-95% of race pace was sufficient to induce inspiratory muscle fatigue in less than 2.7 min. Furthermore, although diaphragm muscle length is optimized when supine, our results indicate that the force output of the diaphragm and inspiratory accessory muscles is greater when upright than when supine.  相似文献   

8.
Purpose: Correlations between fatigue-induced changes in exercise performance and maximal rate of heart rate (HR) increase (rHRI) may be affected by exercise intensity during assessment. This study evaluated the sensitivity of rHRI for tracking performance when assessed at varying exercise intensities. Method: Performance (time to complete a 5-km treadmill time-trial [5TTT]) and rHRI were assessed in 15 male runners following 1 week of light training, 2 weeks of heavy training (HT), and a 10-day taper (T). Maximal rate of HR increase (measured in bpm·s?1) was the first derivative maximum of a sigmoidal curve fit to HR data recorded during 5 min of running at 8 km·h?1 (rHRI8km·h?1), and during subsequent transition to 13 km·h?1 (rHRI8–13km·h?1) for a further 5 min. Results: Time to complete a 5-km treadmill time-trial was likely slower following HT (effect size ± 90% confidence interval = 0.16 ± 0.06), and almost certainly faster following T (–0.34 ± 0.08). Maximal rate of HR increase during 5 min of running at 8 km·h?1 and rHRI8–13km·h?1 were unchanged following HT and likely increased following T (0.77 ± 0.45 and 0.66 ± 0.62, respectively). A moderate within-individual correlation was found between 5TTT and rHRI8km·h?1 (r value ± 90% confidence interval = –.35 ± .32). However, in a subgroup of athletes (= 7) who were almost certainly slower to complete the 5TTT (4.22 ± 0.88), larger correlations were found between the 5TTT and rHRI8km·h?1 (r = –.84 ± .22) and rHRI8–13km·h?1 (r = –.52 ± .41). Steady-state HR during rHRI assessment in this group was very likely greater than in the faster subgroup (≥ 1.34 ± 0.86). Conclusion(s): The 5TTT performance was tracked by both rHRI8km·h?1 and rHRI8–13km·h?1. Correlations between rHRI and performance were stronger in a subgroup of athletes who exhibited a slower 5TTT. Individualized workloads during rHRI assessment may be required to account for varying levels of physical conditioning.  相似文献   

9.
Abstract

In this study, we wished to determine whether the observed reduction in quadriceps muscle oxygen availability, reported during repetitive bouts of isometric exercise in simulated sailing efforts (i.e. hiking), is because of restricted muscle blood flow. Six national-squad Laser sailors initially performed three successive 3-min hiking bouts followed by three successive 3-min cycling tests sustained at constant intensities reproducing the cardiac output recorded during each of the three hiking bouts. The blood flow index (BFI) was determined from assessment of the vastus lateralis using near-infrared spectroscopy in association with the light-absorbing tracer indocyanine green dye, while cardiac output was determined from impedance cardiography. At equivalent cardiac outputs (ranging from 10.3±0.5 to 14.8±0.86 L · min?1), the increase from baseline in vastus lateralis BFI across the three hiking bouts (from 1.1±0.2 to 3.1±0.6 nM · s?1) was lower (P = 0.036) than that seen during the three cycling bouts (from 1.1±0.2 to 7.2±1.4 nM · s?1) (Cohen's d: 3.80 nM · s?1), whereas the increase from baseline in deoxygenated haemoglobin (by ~17.0±2.9 μM) (an index of tissue oxygen extraction) was greater (P = 0.006) during hiking than cycling (by ~5.3±2.7 μM) (Cohen's d: 4.17 μM). The results suggest that reduced vastus lateralis muscle oxygen availability during hiking arises from restricted muscle blood flow in the isometrically acting quadriceps muscles.  相似文献   

10.
The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.3%) over 8 weeks. The participants performed two graded cycle ergometer exercise tests before and after the intervention where VO2max and maximal fat oxidation were measured. Biopsies of the vastus lateralis muscle were obtained before and after the intervention. Recombinant erythropoietin treatment increased mitochondrial O2 flux during ADP stimulated state 3 respiration in the presence of complex I and II substrates (malate, glutamate, pyruvate, succinate) with additional electron input from β-oxidation (octanoylcarnitine) (from 60 ± 13 to 87 ± 24 pmol · s?1 · mg?1 P < 0.01). β-hydroxy-acyl-CoA-dehydrogenase activity was higher after treatment (P < 0.05), whereas citrate synthase activity also tended to increase (P = 0.06). Total myoglobin increased by 16.5% (P < 0.05). Capillaries per muscle area tended to increase (P = 0.07), whereas capillaries per fibre as well as the total expression of vascular endothelial growth factor remained unchanged. Whole body maximal fat oxidation was not increased after treatment. Eight weeks of recombinant erythropoietin treatment increases mitochondrial fatty acid oxidation capacity and myoglobin concentration without any effect on whole body maximal fat oxidation.  相似文献   

11.
Kinetics and full body kinematics were measured in ten elite goalkeepers diving to save high and low balls at both sides of the goal, aiming to investigate their starting position, linear and angular momentum, and legs' contribution to end-performance. Our results showed that goalkeepers adopted a starting position with a stance width of 33 ± 1% of leg length, knee flexion angle of 62 ± 18° and hip flexion angle of 63 ± 18°. The contralateral leg contributed more than the ipsilateral leg to COM velocity (p < 0.01), both for the horizontal (2.7 ± 0.1 m·s?1 versus 1.2 ± 0.1 m·s?1) and for the vertical component (3.1 ± 0.3 m·s?1 versus 0.4 ± 0.2 m·s?1). Peak horizontal and peak angular momenta were significantly larger (p < 0.01) for low dives than for high dives with a mean difference of 55 kg·m·s?1 and 9 kg·m2·s?1, respectively. In addition, peak vertical momentum was significantly larger (p < 0.01) for high dives with a mean difference between dive heights of 113 kg·m·s?1. Coaches need to highlight horizontal lateral skills and exercises (e.g. sideward push-off, sideward jumps), with emphasis on pushing-off with the contralateral leg, when training and assessing goalkeeper’s physical performance.  相似文献   

12.
ABSTRACT

This study assessed the intra-individual reliability of oxygen saturation in intercostal muscles (SmO2-m.intercostales) during an incremental maximal treadmill exercise by using portable NIRS devices in a test-retest study. Fifteen marathon runners (age, 24.9 ± 2.0 years; body mass index, 21.6 ± 2.3 kg·m?2; V?O2-peak, 63.7 ± 5.9 mL·kg?1·min?1) were tested on two separate days, with a 7-day interval between the two measurements. Oxygen consumption (V?O2) was assessed using the breath-by-breath method during the V?O2-test, while SmO2 was determined using a portable commercial device, based in the near-infrared spectroscopy (NIRS) principle. The minute ventilation (VE), respiratory rate (RR), and tidal volume (Vt) were also monitored during the cardiopulmonary exercise test. For the SmO2-m.intercostales, the intraclass correlation coefficient (ICC) at rest, first (VT1) and second ventilatory (VT2) thresholds, and maximal stages were 0.90, 0.84, 0.92, and 0.93, respectively; the confidence intervals ranged from ?10.8% – +9.5% to ?15.3% – +12.5%. The reliability was good at low intensity (rest and VT1) and excellent at high intensity (VT2 and max). The Spearman correlation test revealed (p ≤ 0.001) an inverse association of SmO2-m.intercostales with V?O2 (ρ = ?0.64), VE (ρ = ?0.73), RR (ρ = ?0.70), and Vt (ρ = ?0.63). The relationship with the ventilatory variables showed that increased breathing effort during exercise could be registered adequately using a NIRS portable device.  相似文献   

13.
Abstract

The aim of this study was to determine if inducing metabolic alkalosis would alter neuromuscular control after 50 min of standardized submaximal cycling. Eight trained male cyclists (mean age 32 years, s = 7; [Vdot]O2max 62 ml · kg?1 · min?1, s = 8) ingested capsules containing either CaCO3 (placebo) or NaHCO3 (0.3 g · kg?1 body mass) in eight doses over 2 h on two separate occasions, commencing 3 h before exercise. Participants performed three maximal isometric voluntary contractions (MVC) of the knee extensors while determining the central activation ratio by superimposing electrical stimulation both pre-ingestion and post-exercise, followed by a 50-s sustained maximal contraction in which force, EMG amplitude, and muscle fibre conduction velocity were assessed. Plasma pH, blood base excess, and plasma HCO3 were higher (P < 0.01) during the NaHCO3 trial. After cycling, muscle fibre conduction velocity was higher (P < 0.05) during the 50-s sustained maximal contraction with NaHCO3 than with placebo (5.1 m · s?1, s = 0.4 vs. 4.2 m · s?1, s = 0.4) while the EMG amplitude remained the same. Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.  相似文献   

14.
Physical inactivity is a major contributor to low-grade systemic inflammation. Most of the studies characterizing interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) release from exercising legs have been done in young, healthy men, but studies on inactivity in older people are lacking. The impact of 14 days of one-leg immobilization (IM) on IL-6 and TNF-α release during exercise in comparison to the contralateral control (CON) leg was investigated. Fifteen healthy men (age 68.1?±?1.1?year (mean?±?SEM); BMI 27.0?±?0.4 kg·m2; VO2max 33.3?±?1.6 ml·kg?1·min?1) performed 45?min of two-leg dynamic knee extensor exercise at 19.5?±?0.9 W. Arterial and femoral venous blood samples from the CON and the IM legs were collected every 15?min during exercise, and thigh blood flow was measured with ultrasound Doppler. Arterial plasma IL-6 concentration increased with exercise (rest vs. 45?min, main effect p?p?p?=?.085, effect size 0.28) higher in the IM leg compared to the CON leg (288 (95% CI: 213–373) vs. 220 (95% CI: 152–299) pg·min?1, respectively). There was no release of TNF-α in either leg and arterial concentrations remained unchanged during exercise (p?>?.05). In conclusion, exercise induces more pronounced IL-6 secretion in healthy older men. Two weeks of unilateral immobilization on the other hand had only a minor influence on IL-6 release. Neither immobilization nor exercise had an effect on TNF-α release across the working legs in older men.  相似文献   

15.
Load carriage (LC) exercise in physically demanding occupations is typically characterised by periods of low-intensity steady-state exercise and short duration, high-intensity exercise while carrying an external mass in a backpack; this form of exercise is also known as LC exercise. This induces inspiratory muscle fatigue and reduces whole-body performance. Accordingly we investigated the effect of inspiratory muscle training (IMT, 50% maximal inspiratory muscle pressure (PImax) twice daily for six week) upon running time-trial performance with thoracic LC. Nineteen healthy males formed a pressure threshold IMT (n?=?10) or placebo control group (PLA; n?=?9) and performed 60?min LC exercise (6.5?km?h–1) followed by a 2.4?km running time trial (LCTT) either side of a double-blind six week intervention. Prior to the intervention, PImax was reduced relative to baseline, post-LC and post-LCTT in both groups (pooled data: 13?±?7% and 16?±?8%, respectively, p?PImax increased +31% (p?TT (+18%, p?PImax at each time point was unchanged (13?±?11% and 17?±?9%, respectively, p?>?.05). In IMT only, heart rate and perceptual responses were reduced post-LC (p?p?相似文献   

16.
Abstract

The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake ([Vdot]O2max) and distance travelled with peak oxygen uptake ([Vdot]O2peak) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine [Vdot]O2peak, and the MSFT on an indoor wooden basketball court. Mean ergometer [Vdot]O2peak was 2.66 litres · min?1 (s = 0.49) and peak heart rate was 188 beats · min?1 (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats · min?1 (s = 11). Low to moderate correlations (ρ = 0.39 to 0.58; 95% confidence interval [CI]: ?0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer [Vdot]O2peak. There was a mean bias of ?1.9 beats · min?1 (95% CI: ?5.9 to 2.0) and standard error of measurement of 6.6 beats · min?1 (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT [Vdot]O2peak values revealed a large mean systematic bias of 15.3 ml · kg?1 · min?1 (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml · kg?1 · min?1 (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats · min?1; 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

17.
Abstract

Detailed time-series of the resultant joint moments and segmental interactions during soccer instep kicking were compared between the preferred and non-preferred kicking leg. The kicking motions of both legs were captured for five highly skilled players using a three-dimensional cinematographic technique at 200 Hz. The resultant joint moment (muscle moment) and moment due to segmental interactions (interaction moment) were computed using a two-link kinetic chain model composed of the thigh and lower leg (including shank and foot). The mechanical functioning of the muscle and interaction moments during kicking were clearly illustrated. Significantly greater ball velocity (32.1 vs. 27.1 m · s?1), shank angular velocity (39.4 vs. 31.8 rad · s?1) and final foot velocity (22.7 vs. 19.6 m · s?1) were observed for the preferred leg. The preferred leg showed a significantly greater knee muscle moment (129.9 N · m) than the non-preferred leg (93.5 N · m), while no substantial differences were found for the interaction moment between the two legs (79.3 vs. 55.7 N · m). These results indicate that the highly skilled soccer players achieved a well-coordinated inter-segmental motion for both the preferred and non-preferred leg. The faster leg swing observed for the preferred leg was most likely the result of the larger muscle moment.  相似文献   

18.
19.
Team handball is a popular sport worldwide that requires numerous throws to be made throughout the course of a game. Because of the upper extremity demands of repetitive throwing, it is possible that fatigue can alter the mechanics of a shot. The purpose of this study was to determine the influence of localised fatigue on jump shot kinematics and kinetics. Eleven male team handball players (23.1 ± 3.1 years; 185.1 ± 8.3 cm; 89.7 ± 12.2 kg) volunteered. An electromagnetic tracking system was used to examine the jump shot prior to and following localised fatigue. The fatiguing protocol consisted of throwing a 2.2 kg medicine ball into a rebounder until volitional fatigue. No significant kinematic or kinetic differences were observed following fatigue. Shoulder external rotation was ?74.8 ± 14.9° prior to and ?79.0 ± 14.7° following fatigue at MER. Scapula, external rotation at ball release (BR) prior to fatigue was ?2.2 ± 7.0° and ?3.2 ± 11.1° following fatigue. Scapular internal rotation, at maximum shoulder internal rotation (MIR), changed from 18.4 ± 11.2° to 20.4 ± 11.8°. Ball velocity decreased from19.8 m · s–1 to 18.8 m · s–1 (P = 0.12). Accuracy percentage in the pre-fatigue trials was 60.8 ± 14.1% and 52.8 ± 12.7% following fatigue (P = 0.20). While no significant changes were observed, it is possible that other fatiguing protocols that more closely represent the aerobic and throwing demands of the sport may have a greater effect on the kinematics and kinetics of the jump shot.  相似文献   

20.
Abstract

This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake ([Vdot]O2max) 47.0 ± 7ml · kg · min?1) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l?1) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l?1, respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号