首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the load mitigation problem for wind turbines by using active tuned mass dampers. A state space model for the tower/nacelle system is established with the consideration of tower/blade interaction. The uncertainties that appear in the damping matrix and natural frequencies are also considered in the controller design. External loads acting on the tower including the drag force induced by winds and the absolute base shear induced by the rotating blades are involved, and shaping filters for online generating these loads are proposed which can be easily implemented in numerical simulations. An adaptive sliding-mode controller is proposed to handle the system uncertainties, external disturbances and hard constraint, and also to improve the overall performance of the wind turbine system. Numerical simulations are performed to demonstrate the effectiveness of the proposed control law.  相似文献   

2.
To control MIMO systems with unmatched uncertainties, two sliding-mode controllers are presented in this paper. Firstly, a terminal sliding-mode controller is presented to force the output of an MIMO system to a region near zero in finite-time. With the analysis on the effect of the unmatched uncertainties, a full-order terminal sliding-mode control is further proposed to force the output of the MIMO system to converge to zero rather than a region. The virtual control is utilized to establish the reference for the part of the system states, which can reject unmatched uncertainties completely. To generate continuous virtual control signals, the proposed full-order terminal sliding-mode controller makes the ideal sliding motion as the full-order dynamics rather than the reduced-order dynamics in traditional sliding-mode control systems. Finally, the simulations on the control of an L-1011 fixed wing aircraft at cruise flight conditions validate the effectiveness of the proposed method.  相似文献   

3.
In this paper a sliding mode position control for high-performance real-time applications of induction motors is developed. The design also incorporates a sliding mode rotor flux estimator in order to avoid the flux sensors. The proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the observer and the controller, under parameter uncertainties and load torque disturbances, is provided using the Lyapunov stability theory. Finally simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.  相似文献   

4.
This paper is concerned with the high performance adaptive robust control problem for an aircraft load emulator (LE). High dynamic capability is a key performance index of load emulator. However, physical load emulators exist a lot of nonlinearities and modeling uncertainties, which are the main obstacles for achieving high performance of load emulator. To handle the modeling uncertainty and achieve adjustable model-based compensation, firstly, the mathematical model of the load emulator is built, and then a nonlinear adaptive robust controller only with output feedback signal is proposed to improve the tracking accuracy and dynamic response capability. The controller is constructed based on the adaptive robust control framework with necessary design modifications required to accommodate uncertainties and nonlinearities of hydraulic load emulator. In this approach, nonlinearities are canceled by output feedback signal; and modeling errors, including parametric uncertainties and uncertain nonlinearities, are dealt with adaptive control and robust control respectively. The resulting controller guarantees a prescribed disturbance attenuation capability in general while achieving asymptotic output tracking in the absence of time-varying uncertainties. Experimental results are obtained to verify the high performance nature of the proposed control strategy, especially the high dynamic capability.  相似文献   

5.
This article develops an asymptotic tracking control strategy for uncertain nonlinear systems subject to additive disturbances and parametric uncertainties. To fulfill this work, an adaptive-gain disturbance observer (AGDO) is first designed to estimate additive disturbances and compensate them in a feedforward way, which eliminates the impact of additive disturbances on tracking performance. Meanwhile, an updated observer gain law driven by observer estimation errors is adopted in AGDO, which reduces the conservatism of observer gain selection and is beneficial to practical implementation. Also, the parametric uncertainties existing in systems are addressed via an integrated parametric adaptive law, which further decreases the learning burden of AGDO. Based on the parametric adaption technique and the proposed AGDO approach, a composite controller is employed. The stability analysis uncovers the system asymptotic tracking performance can be attained even when facing time-variant additive disturbances and parametric uncertainties. In the end, comparative experimental results of an actual mechatronic system driven by a dc motor uncover the validity of the developed approach.  相似文献   

6.
This paper focuses on the optimal control of a DC torque motor servo system which represents a class of continuous-time linear uncertain systems with unknown jumping internal dynamics. A data-driven adaptive optimal control strategy based on the integration of adaptive dynamic programming (ADP) and switching control is presented to minimize a predefined cost function. This takes the first step to develop switching ADP methods and extend the application of ADP to time-varying systems. Moreover, an analytical method to give the initial stabilizing controller for policy iteration ADP is proposed. It is shown that under the proposed adaptive optimal control law, the closed-loop switched system is asymptotically stable at the origin. The effectiveness of the strategy is validated via simulations on the DC motor system model.  相似文献   

7.
This paper studies the problem of finite-time formation tracking control for networked nonaffine nonlinear systems with unmeasured dynamics and unknown uncertainties/disturbances under directed topology. A unified distributed control framework is proposed by integrating adaptive backstepping control, dynamic gain control and dynamic surface control based on finite-time theory and consensus theory. Auxiliary dynamics are designed to construct control gains with non-Lipschitz dynamics so as to guarantee finite-time convergence of formation errors. Adaptive control is used to compensate for uncertain control efforts of the transformed systems derived from original nonaffine systems. It is shown that formation tracking is achieved during a finite-time period via the proposed controller, where fractional power terms are only associated with auxiliary dynamics instead of interacted information among the networked nonlinear systems in comparison with most existing finite-time cooperative controllers. Moreover, the continuity of the proposed controller is guaranteed by setting the exponents of fractional powers to an appropriate interval. It is also shown that the improved dynamic surface control method could guarantee finite-time convergence of formation errors, which could not be accomplished by conventional dynamic surface control. Finally, simulation results show the effectiveness of the proposed control scheme.  相似文献   

8.
Benefiting from a newly designed switching function in terminal sliding manifold and novel uncertainty handling solutions, this article presents a low-cost neuroadaptive control scheme that can not only achieve the finite time tracking control of robot system with multiple uncertainties also circumvent the possible singularity. Specifically, for the kinematics parameter uncertainties involved, the proposed terminal sliding mode observer can ensure the actual position of end-effector be accurately estimated within a finite time. And then, a neural approximator is designed to handle the non-parameterizable lumped dynamics uncertainty, and a new low-cost neural adaptive mechanism is constructed to reduce the computational burden. Furthermore, it is proved that all closed-loop signals are bounded and the tracking error converges to an arbitrarily small adjustable neighborhood of the origin within a finite time. The comparison simulation example also confirms the effectiveness and superiority of the proposed control scheme.  相似文献   

9.
In this paper, the adaptive sliding mode control issue for switched nonlinear systems with matched and mismatched uncertainties is addressed, where the persistent dwell-time switching rule is introduced to describe the switching of parameters. Besides, considering the case that the upper bound of the matched uncertainty is unknown, the purpose of this paper is to utilize an adaptive control method to estimate its upper bound parameters. To begin with, a linear sliding surface is constructed, and then the reduced-order sliding mode dynamics can be obtained through a reduced-order method. Next, sufficient conditions can be derived based on the Lyapunov stability and the persistent dwell-time switching analysis techniques ensuring that the reduced-order sliding mode dynamics is globally uniformly exponentially stable. Moreover, a switched adaptive sliding mode control law is designed, which can not only ensure the reachability of the sliding surface but also estimate the upper bound parameters of the matched uncertainty. Finally, a numerical example and a circuit model are introduced to verify the effectiveness of the proposed method.  相似文献   

10.
In this paper, an adaptive output feedback fault tolerant control (FTC) based on actuator switching is proposed for a class of single-input single-output (SISO) nonlinear systems with uncertain parameters and possible actuator failures, for which a set of healthy actuators are available as backups. While high-gain K-filters are utilized to estimate the unmeasured states, an adaptive control law is designed to compensate for the parameter uncertainties and certain actuator failures, an actuator switching strategy based on a set of appropriately designed monitoring functions (MFs) is proposed to tackle those serious actuator failures, make tracking error satisfy prescribed transient and steady-state performance and guarantee closed-loop signal boundedness.  相似文献   

11.
In this study, a total sliding-mode-based particle swarm optimization control (TSPSOC) scheme is designed for the periodic motion control of an indirect field-oriented linear induction motor (LIM) drive. First, an indirect field-oriented mechanism for a LIM drive is introduced to preserve the decoupling control characteristic. Then, the concept of total sliding-mode control (TSC) is incorporated into particle swarm optimization (PSO) to form an on-line TSPSOC framework for preserving the robust control characteristics and reducing the chattering control phenomena of TSC. Moreover, an adaptive inertial weight is devised to accelerate the searching speed effectively. In this control scheme, a PSO control system is utilized to be the major controller, and the stability can be indirectly ensured by the concept of TSC without strict constraint and detailed system knowledge. With the proposed TSPSOC system, the mover position of the controlled LIM drive possesses the advantages of favorable robust characteristic, control effort without chattering, and simple control framework. Numerical simulations and experimental results are given to verify the effectiveness of the proposed control scheme for the tracking of periodic reference trajectories. In addition, the superiority of the proposed TSPSOC scheme is indicated in comparison with the TSC, Petri fuzzy-neural-network control (PFNNC) and traditional fuzzy-neural-network control (TFNNC) systems.  相似文献   

12.
This paper considers the output feedback sliding-mode control for an uncertain linear system with unstable zeros. Based on a frequency shaping design, a dynamic-gain observer is used for state estimation of an uncertain system. This paper confirms that (1) state estimation is globally stable in a practical sense, (2) the resultant error can be arbitrarily small with respect to the system uncertainties, and (3) the proposed sliding-mode control can drive the uncertain system state into an arbitrarily small residual set around the origin, such that the size of residual set is controlled by the filter design. Moreover, the proposed control design is inherently robust to measurement noise; the effect of measurement noise can effectively be attenuated without any additional work.  相似文献   

13.
This paper investigates the synchronous control problem for a class of flexible telerobotic systems subject to system uncertainties and communication constraints. In view of the asymmetric time-varying communication delays, an adaptive time-delay estimator is designed to reduce the impacts of delays on the system. Moreover, by combining the neural networks and parameter adaptive method, the uncertainties of system dynamics are estimated and compensated. Based on these efforts, a new adaptive compensation control protocol is proposed. Additionally, input quantization in network control induced chattering phenomenon and unknown parameters is also dealt with by the adaptive compensation method. A useful characteristic of this paper is that the “complexity explosion” problem caused by the backstepping technique is circumvented effectively. Finally, sufficient conditions are derived for the synchronous control of the master-slave flexible telerobotic system under Lyapunov stability theory. A numerical example of flexible-joint robotic system is provided to illustrate the effectiveness of the proposed control schemes.  相似文献   

14.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

15.
In this paper, a new framework of the robust adaptive neural control for nonlinear switched stochastic systems is established in the presence of external disturbances and system uncertainties. In the existing works, the design of robust adaptive control laws for nonlinear switched systems mainly relies on the average dwell time method, while the design and analysis based on the model-dependent average dwell time (MDADT) method remains a challenge. An improved MDADT method is developed for the first time, which greatly relaxes the requirements of Lyapunov functions of any two subsystems. Benefiting from the improved MDADT, a switched disturbance observer for discontinuous disturbances is proposed, which realizes the real-time gain adjustment. For known and unknown piecewise continuous nonlinear functions, a processing method based on the tracking differentiator and the neural network is proposed, which skillfully guarantees the continuity of the control law. The theoretical proof shows that the semiglobal uniform ultimate boundedness of all closed-loop signals can be guaranteed under switching signals with MDADT property, and simulation results of the longitudinal maneuvering control at high angle of attack are given to further illustrate the effectiveness of the proposed framework.  相似文献   

16.
In this paper, an asymptotic adaptive dynamic surface tracking control strategy is investigated for uncertain full-state constrained nonlinear systems subject to parametric uncertainties and external disturbances. A novel disturbance estimator (DE) is firstly used to compensate for external disturbances. The parametric uncertainties are accordingly handled via a synthesized adaptive law. Then, by using the barrier Lyapunov function (BLF) and dynamic surface control (DSC), an appropriate backstepping design framework employing a novel adaptive-gain nonlinear filter is given, which avoids the “explosion of complexity” and relieves the conservatism of filter gain selection. The theoretical analysis reveals the asymptotic tracking performance is assured with the proposed controller. In the end, some simulation cases demonstrate the validity of the proposed controller.  相似文献   

17.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

18.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

19.
Recently, series elasticity has been realized using pneumatics in human-robot interaction systems. Pneumatic circuits provide not only a flexible power transmission, but also the elastic element in a series elastic actuator (SEA). Pneumatic series elastic systems involve more than twice the number of parameters that influence system behaviors in comparison with rigid robotic systems. In this study, a position controller that eliminates the need of identifying a system model by employing the time delay estimation (TDE) technique is proposed for pneumatic SEA systems. The TDE technique is effective in compensating for system dynamics and all uncertainties involved in system behaviors without imposing computation load. TDE error is cancelled out through a learning way, which improves control performance and leads to asymptotic stability. A simulation study demonstrates the robustness of the proposed controllers against uncertainties imposed on the motor system as well as uncertainties on the end-effector. The simulation shows the efficacy of the learning compensation for TDE error.  相似文献   

20.
This article investigates the order-reduction method for multi-spacecraft cooperative tracking control problems considering non-uniform time delays. The tracking error system is constructed as a linear time-varying (LTV) system since the orbit of the reference point is an ellipse. To facilitate the controller design, a model transformation method is proposed to transform the LTV system into a linear time-invariant (LTI) system with norm-bounded uncertainties. By using the sliding-mode control (SMC) technique, a delay-dependent cooperative tracking controller is designed to guarantee multiple followers to track the leader. Then, an order-reduction method is proposed to reduce the order of sufficient conditions in the form of linear matrix inequalities (LMIs), which make sure that the tracking error system is asymptotically stable. A numerical example is finally provided to illustrate the effectiveness of the designed controller and the improved performance of the order-reduction method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号