首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
如果一元二次方程ax2 bx c=0(a≠0)的两个根是x1,x2,那么x1 x2=-ba;x1x2=ca.这就是著名的韦达定理.根据韦达定理,可得出以下两个推论.推论1设x1,x2是一元二次方程ax2 bx c=0(a≠0)的两根,则x1-x2=Δ姨a,其中Δ=b2-4ac.利用韦达定理很容易证明推论1.推论2如果一元二次方程ax2 bx c=0(a≠0)的两根之比为k,则kb2=(1 k)2ac.证明:设x1,x2是方程ax2 bx c=0(a≠0)的两个实数根,则x1x2=k,x1 x2=-ba,x1x2=ca .消去方程组中的x1和x2,得kb2=(1 k)2ac. 下面谈谈以上两个推论的应用.例1已知开口向下的抛物线y=ax2 bx c与x轴交于M、N两点(…  相似文献   

2.
抛物线y=ax2 bx c(a≠0),当Δ=b2-4ac>0时,它与x轴必有不同的两个交点,此两点间的距离叫做抛物线截x轴所得弦长.关于抛物线截x轴所得弦长与判别式的关系,我们给出如下性质:定理1 当Δ=b2-4ac>0时,抛物线y=ax2 bx c与x轴交于A(x1,0)、B(x2,0)两点,记d=AB=|x1-x2|,则:Δ=b2-4ac=(ad)2.证明 显然x1、x2是一元二次方程ax2 bx c=0的两根,所以x1 x2=-ba,x1x2=ca.Δ=b2-4ac=a2[(-ba)2-4.ca]=a2[(x1 x2)2-4x1x2]=a2(x1-x2)2=a2(|x1-x2|)2=(ad)2.定理2 当Δ=-4ak>0时,抛物线y=a(x-h)2 k与x轴交于A(x1,0)、B(x2,0)两点,记d=AB=|x1-x2|,则:Δ=-4…  相似文献   

3.
命题 若实数 a,b,c满足 a b c=0 ,则  ( ) a3 b3 c3=3abc;( )关于 x的方程 ax2 bx c=0必有一根为 1;( ) b2 ≥ 4ac.证明  ( )由乘法公式 (a b c) (a2 b2 c2 - ab- bc- ca) =a3 b3 c3- 3abc知 ,当 a b c=0时 ,a3 b3 c3=3abc.( )当 x=1时 ,ax2 bx c=a b c= 0 ,故 x=1是方程 ax2 bx c=0的根 .( )当 a≠ 0时 ,ax2 bx c=0是一元二次方程 ,由 ( )知它有实数根 ,故△≥ 0 ,即b2 - 4ac≥ 0 ,b2 ≥ 4ac.当 a=0时 ,b2≥ 4ac显然成立 .这是一个重要的命题 ,它的应用极为广泛 ,利用它来解决条件中出现 (或可化成 ) a b …  相似文献   

4.
设x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1=(-b+(b2-4ac))/2a,x2=(-b-(b2-4ac))/2a,x1+x2=-(b/a),x1·x2=c/a,由此,得  相似文献   

5.
如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1和x2,那么x1+x2=-a/b,x1x2=c/a,这就是著名的韦达定理.韦达定理的常规证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.本文不借助于一元二次方程的求根公式给出韦达定理的几个新颖别致的证法,供大家参考.  相似文献   

6.
对于实数系一元二次方程 ax2 +bx+c=0 (a≠ 0 ) ,如果 b2 - 4ac>0 ,那么方程有两个不相等的实数根 ;b2 - 4ac<0 ,那么方程没有实数根 .这就是一元二次方程根的判别式定理 ,我们把△ =b2 - 4ac叫做方程 ax2+bx+c=0 (a≠ 0 )的判别式 .这个定理的逆命题也是成立的 .判别式定理揭示了一元二次方程的系数与它的根之间的内在联系 ,它的应用主要有以下几个方面 .1 .判断方程根的性质 .在初中阶段我们研究的是实数系数的一元二次方程 ,有下列命题 :(1 )一元二次方程 ax2 +bx+c=0 (a≠ 0 )中 ,如果 a、 b、 c是有理数且△ =b2 - 4ac是一个完全平方数…  相似文献   

7.
若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=-b/a,x1·x2=c/a.这就是一元二次方程的根与系数的关系,又称"韦达定理".由韦达定理可得:  相似文献   

8.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

9.
在一元二次方程ax2 +bx +c =0(a≠0)中,若两根为x1、x2,则x1+x2=-b/4,x1·x2=c/a,根与系数的这种关系又称为韦达定理.它的逆定理同样成立,即当x1+x2=b/a,x1·x2=c/a时,那么x1、x2是ax2 +bx +c=0(a≠0)的两根. 一元二次方程的根与系数的关系,综合性强,应用极为广泛. 一、确定符合条件的方程 例1 (2012年烟台卷)下列一元二次方程两实数根的和为-4的是().  相似文献   

10.
若x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根,则有ax1^2+bx1+c=0,ax2^2+bx2+c=0.反之,若ax1^2+bx1+c=0,ax2^2+bx2+c=0,且x1≠x2,则x1,x2是一元二次方程ax^2+bx+c=0的两根。  相似文献   

11.
一元二次方程ax2+bx+c=0(a≠0)根的分布问题,实质上是函数 f(x)=ax2+bx+c(a≠0)的零点分布问题,即抛物线与x轴的交点问题.下面从两个视角审视一元二次方程根的分布问题:(1)方程视角(韦达定理法);(2)函数视角(图象法).设一元二次方程ax2+bx+c=0(a≠ 0)的两根为x1、x2,m、n、p、q∈R,则有:  相似文献   

12.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

13.
大家知道,如果x1,x2(x1≠x2)是方程ax2 bx c=0(a≠0)的两个根,则有ax12 bx1 C=0,ax22 bx2 c=0. 反之,若ax12 bx1十c=0,ax22 bx2 c=0,x1≠x2,则x1,x2是方程ax2 bx c=0(a≠0)的两个根.  相似文献   

14.
设一元二次方程ax2 bx c=0(a≠0)(1),其实根为x1,x2.对应的二次函数为f(x)=ax2 bx c(a≠0),则f(0)=c.1一元二次方程根的基本分布———零分布所谓一元二次方程根的零分布,指的是  相似文献   

15.
1 基本内容 1)如果ax2 bx c=0(a≠0)的2根是x1、x2,那么x1 x2=-b/a,x1·x2=c/a.一元二次方程根与系数的关系叫做韦达定理.  相似文献   

16.
林定国  周奕生 《初中生》2015,(27):38-41
如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2,那么x1+x2=-b/a,x1·x2=c/a,这就是一元二次方程根与系数的关系,又称韦达定理.根与系数的关系在解题中有着广泛的应用.  相似文献   

17.
如果一元二次方程ax2+bx+c(a≠0)的系数和a+b+c=0,则不难发现:x=1满足方程ax2+bx+c=0,即x=1是该方程的一个根.反之,如果x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,  相似文献   

18.
一元二次方程ax2 +bx +c =0 (a≠ 0 )的根的判别式△ =b2 - 4ac ,不仅可以判定方程实根情况 ,还可以用它判别二次三项式ax2 +bx +c因式分解的方法与范围 ,求抛物线y =ax2 +bx +c(a≠ 0 )与x轴交点的个数 ,以及证明某些几何不等式问题 ,现以有关中考试题为例 ,简述一元二次方程根的判别式的应用  相似文献   

19.
二次函数 y=ax2 bx c(a≠ 0 )的图象及性质在初中代数教材中占有重要地位 ,这部分知识与前后内容联系紧密 ,灵活性、综合性较强。下面着重介绍二次函数 y=ax2 bx c(a≠ 0 )与一元二次方程 ax2 bx c=0 (a≠ 0 )之间的关系。一、一元二次方程 ax2 bx c=0 (a≠ 0 )的根的情况决定着抛物线 y=ax2 bx c(a≠ 0 )与x轴交点的情况。下面是二次函数 y=ax2 bx c(a>0 )的图象 ,观察图象 ,回答 :x取何值时 ,y=0。  (甲 )   (乙 )   (丙 )由 (甲 )图可以看出 ,抛物线y=ax2 bx c与 x轴交于两点(- 1,0 )与 (3,0 ) ,也就是说 ,有…  相似文献   

20.
陈宝义  李培华 《初中生》2015,(36):26-27
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)和一元二次方程ax2+bx+c=0有着密切的联系.对于二次函数或一元二次方程问题,我们依据题目的特征,灵活处理,则能使某些问题得到简捷、巧妙的解决. 抛物线y=ax2+bx+c与x轴的交点、一元二次方程ax2+bx+c=0的根、判别式△=b2-4ac的符号关系如下表: 一、求方程的根 例1(2014年柳州卷)小兰画了y=x2+ax+b的图像如图1所示,则关于x的方程x2+ax+b =0的解是().  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号