首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
SEAD method estimates the direction-of-arrival angles on an uniformly linear array based on the difference between the two largest singular values, what is called differential spectrum. Although it presented an outstanding performance, the ability to indicate the source positions was not elucidated yet. Inspired by the differential spectrum formulation we derived a total differential spectrum and found out that the matrix norm induced by the vector 2-norm of a modified spatial covariance matrix can be used to estimate the direction-of-arrival of multiple plane waves. Indeed we show that matrix norms are estimators and we propose their use instead of the singular value decomposition in SEAD-based methods. We present a general mathematical expression in order to explicit the operating principles of the proposed methods. Consequently, we were able to explain how the relation between the arriving and the search angles produces the larger peaks on the differential spectrum. To evaluate the important role played by matrix norms, a thousand experiments were carried out. They showed that the proposed approach proved to be as accurate as the previous SEAD-based methods, while providing a significant reduction on runtime. It also outperformed well-established methods like MODEX regarding the estimation error.  相似文献   

2.
In this paper, we provide an efficient approach based on combination of singular value decomposition (SVD) and Lyapunov function methods to finite-time stability of linear singular large-scale complex systems with interconnected delays. By representing the singular large-scale system as a differential-algebraic system and using Lyapunov function technique, we provide new delay-dependent conditions for the system to be regular, impulse-free and robustly finite-time stable. The conditions are presented in the form of a feasibility problem involving linear matrix inequalities (LMIs). Finally, a numerical example is presented to show the validity of the proposed results.  相似文献   

3.
Compared to the traditional single color plane based image denoising methods, the quaternion valued singular value decomposition (QSVD) exploits the relationship among different color planes. Hence, it has been applied to the color image denoising. On the other hand, compared to the non-overlapping based image denoising methods, the two dimensional real valued singular spectrum analysis (2DSSA) constructs the trajectory matrix with many elements in the matrix being overlapped. Since the 2DSSA exploits the local information within each color plane, it has also been applied to the single color plane based image denoising. However, neither these two image denoising methods can exploit the relationship among the color planes and the local information within each color plane simultaneously. Therefore, this paper proposes a two dimensional quaternion valued singular spectrum analysis (2DQSSA) based method for performing the color image denoising. Our proposed method can enjoy the advantages of both methods. However, the most critical issue for the 2DQSSA is on the selection of these 2DQSSA components. This paper finds that the optimal total number of the 2DQSSA components used for performing the reconstruction is monotonic decreasing with respect to the power of the noise in the image. Therefore, the polynomial fitting approach is proposed to model this relationship. Since the 2DQSSA based denoising method exploits the relationship among the red color plane, the green color plane and the blue color plane, the 2DQSSA based denoising method outperforms the conventional single color plane based denoising methods. Moreover, since the 2DQSSA based denoising method also exploits the local relationship within each color plane, the 2DQSSA based denoising method outperforms the non-overlapping based methods.  相似文献   

4.
Moving object detection is one of the most challenging tasks in computer vision and many other fields, which is the basis for high-level processing. Low-rank and sparse decomposition (LRSD) is widely used in moving object detection. The existing methods primarily address the LRSD problem by exploiting the approximation of rank functions and sparse constraints. Conventional methods usually consider the nuclear norm as the approximation of the low-rank matrix. However, the actual results show that the nuclear norm is not the best approximation of the rank function since it simultaneously minimize all the singular values. In this paper, we exploit a novel nonconvex surrogate function to approximate the low-rank matrix and propose a generalized formulation for nonconvex low-rank and sparse decomposition based on the generalized singular value thresholding (GSVT) operator. And then, we solve the proposed nonconvex problem via the alternating direction method of multipliers (ADMM), and also analyze its convergence. Finally, we give numerical results to validate the proposed algorithm on both synthetic data and real-life image data. The results demonstrate that our model has superior performance. And we use the proposed nonconvex model for moving objects detection, and provide the experimental results. The results show that the proposed method is more effective than representative LRSD based moving objects detection algorithms.  相似文献   

5.
This paper investigates the safe-circumnavigation problem of a single agent along a group of static targets. We assume in this paper that the distance information cannot be measured directly and only bearing measurements are available. In order to localize the targets, we design the positional estimator where the bearing measurements of the targets are used to construct the system matrix of the state equation of the estimator. To guarantee that the bearing angles are meaningful and with enough precision, we build the condition keeping safe distance between the agent and the targets. Furthermore, a gradual relaxed method is provided to reduce the limitations brought by the mutual restraint between the accuracy of the initial estimation and the desired encircling radius, so as to make the proposed method easy to apply. The performance of the proposed algorithms is verified through an experiment based on a wheeled robot platform.  相似文献   

6.
This paper investigates the problems of stochastic admissibility and extended dissipativity analysis as well as state feedback controller design for interval type-2 singular systems with nonhomogeneous Markovian switching. By utilizing matrix decomposition technique to deal with the time-dependent transition rates, a sufficient condition is established to guarantee that the systems under consideration are regular, impulse-free, stochastically asymptotically stable and extended dissipative. For developing the state feedback controller in light of the obtained sufficient condition, a novel lemma is proposed inspired by Projection lemma, based on which an approach of controller design is provided. It should be pointed out that no conservatism is introduced in controller design due to the sufficiency and necessity of this lemma. Finally, simulation examples are provided to show the effectiveness of the proposed approach.  相似文献   

7.
As a basic concept in modern control theory, controllability reveals the fundamental structural characteristics of a dynamic system, and it also plays an important part in the analysis and control of a dynamic system. With the increasing complexity of multi-agent systems, the multi-agent networks can be divided into some subnetworks in terms of time scales. This paper concentrates on the group controllability of two-time-scale multi-agent networks, establishes the necessary and sufficient criterion of group controllability based on singular perturbation methods, and deduces easy-to-use group controllability criteria by using matrix theory and graph theory. Lastly, a simulation example is presented to illustrate the effectiveness of the proposed methods.  相似文献   

8.
Selection of optimal dimension of trajectory matrix in singular spectrum analysis plays an important role in signal reconstruction from noisy time series. A noisy time series is embedded into a Hankel matrix and the dimension of this matrix depends on the window length considered for a time series. The window length requirement of a time series depends on its underlying data generating mechanism. Since the number of columns in a Hankel structured trajectory matrix is a function of number of rows (window length), dimension dependency occurs naturally in the trajectory matrix and this dependency is characterized by the statistical properties of a time series. In this paper, we develop an entropy based dimension dependency measure that accounts for changes in information content in the matrix in response to changes in window length for a time series. We examine the performance of this measure by using simulation experiments and analyzing real data sets. Results obtained from simulation experiments show that the dimension dependency measure finds reasonably meaningful dimension of the trajectory matrix and provides better forecasting outcome when applied to some popular climatic time series and production indices.  相似文献   

9.
A new approach to control the attitude of a quadrotor UAV in terms of the exponential coordinates is developed in this paper. The exponential coordinate is a minimal representation of the rotation matrix, but it can avoid singularities. Since the quadrotor UAV can be considered as a rigid body aircraft, the analytic closed-form expressions of a rigid body's attitude kinematics are derived from differential of exponential on SO(3). Furthermore, based on the exponential expressions of attitude kinematics, the controller of a fully actuated rigid body is designed using trajectory linearization control method. The overall attitude controller contains two loops, which are designed according to the torque equation and the angular velocity equation respectively. In the numerical simulation, the proposed attitude controller is compared to a controller in the Euler angles, showing that singularities induced by Euler angles are avoided by using exponential coordinates. The robustness test of the attitude controller is also demonstrated in the simulation. The simulation results indicate that the proposed method can be applied to the attitude tracking control of an aerial robot especially when the robot needs to make aggressive maneuverings.  相似文献   

10.
In this paper, we will investigate the necessary conditions, described by the Lyapunov matrix, for the robust exponential stability for a class of linear uncertain systems with a single constant delay and time-invariant parametric uncertainties, which are some generalizations of the existing results on uncertain linear time-delay systems. As a medium step, several pivotal properties of parameter-dependent Lyapunov matrix are proposed, which set up the relationships between fundamental matrix and Lyapunov matrix for the considered system. In addition, to calculate the parameter-dependent Lyapunov matrix, we introduce the differential equation method and the Lagrange interpolation method, respectively. Furthermore, it is noted that the proposed necessary conditions can be used to estimate the range of time delay, when the linear uncertain time-delay system is robust exponential stability. Finally, the validity of the obtained theoretical results is illustrated via numerical examples.  相似文献   

11.
This paper investigates sliding mode control of stochastic singular Markovian jump systems with nonlinearity. The unmatched nonlinearity satisfies one-sided Lipschitz condition and quadratically inner-boundedness. In term of a new technical variable transformation, sufficient conditions are developed for nonlinear stochastic singular Markovian jump systems constrained on sliding manifold to guarantee stochastic admissibility and uniqueness of solution based on implicit function theorem. The sliding mode control law by which the trajectories of system can be compelled to the predefined sliding surface in finite time no matter what initial state value is, is synthesized. The derivative singular matrix is fully considered in the whole design process such that the derived conditions can be checked easily.The technical treatment of the nonlinear matrix term avoids the classification discussion of sliding mode controller design. Convex optimization problems subject to linear matrix inequalities are formulated to optimize the desired indexes of interest. Finally, the effectiveness of the proposed approach is illustrated by a numerical example and a practical example.  相似文献   

12.
This paper deals with the stability analysis and fuzzy stabilizing controller design for fuzzy singular systems with time-varying delay. The time-varying delay is composed of two parts: constant part and time-varying part. Based on the idea of delay partitioning, a new Lyapunov–Krasovskii functional is proposed to develop the new delay-dependent stability criteria, which ensures the considered system to be regular, impulse-free and stable. Furthermore, the desired fuzzy controller gains are also presented by solving a set of strict linear matrix inequalities (LMIs). Some numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.  相似文献   

13.
A new algorithm for computations of matrix partial fractions representing the inverse of linear matrix pencil is based on an appropriate expression in matrix form of the Pascal triangle. It concerns singular and nonsingular systems and starts with the inverse of regular matrix linear pencil M(s) = sA0 - A where only A0 is singular, or both A0 and A are singular. Nonsingular systems are considered as a particular case of singular systems. The presented algorithm of the matrix partial fraction expansion is suitable to determine the matrix transfer function, and is computer oriented because all manipulations can be performed on matrices with constant entries only.  相似文献   

14.
基于极化干涉互相关矩阵的林高估计方法   总被引:1,自引:0,他引:1  
基于噪声影响较小的极化干涉数据的互相关矩阵,提出了一种新的林高估计方法.该方法使用互相关矩阵的奇异值分解代替ESPRIT方法中相干矩阵的特征分解,获取森林散射中心的干涉相位信息,再由森林散射中心的干涉相位差估计森林高度.该方法不但能抑制噪声对森林散射中心干涉相位估计的影响,还提高了运算效率.L波段松树林极化干涉仿真数据验证该方法的有效性.  相似文献   

15.
This paper is concerned with the output regulation problem of matrix second order singular systems via measurement output feedback. It is shown that the solvability of output regulation problem of matrix second order singular systems is equivalent to the solvability of a set of matrix equations, which are called regulator equations. The solvability condition and solutions of the regulator equations are given, which can be used to solve the output regulation problem. A numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

16.
HCMU是一种在Riemann面上带奇点的extremal度量.在面积和Calabi能量有界的情况下, HCMU的Gauss曲率是Riemann面上的连续函数.本文得到一个在球面上没有Gauss曲率鞍点的HCMU的明显表达式,并进一步证明了在球面或环面上HCMU的Gauss曲率光滑的充要条件是度量的所有奇点的角度都是整数.  相似文献   

17.
This paper addresses the issue of resilient control in the presence of denial-of-service (DoS) attacks for a class of cyber-physical systems. The primary objective is to design a static output feedback controller and event-triggered condition simultaneously such that the globally exponential stability of the closed-loop system is ensured. Compared with stepwise techniques, the co-design achieves the trade-off between control performance and communication cost. The control co-design process is formulated as a bilinear matrix inequality (BMI) problem, which involves nonlinear terms. A successive convex optimization approach is proposed to solve the BMI problem. Further, we develop a self-triggered communication scheme to reduce the cost caused by continuous event detection. It is shown that the proposed event/self-triggered strategy is Zeno-free and excludes singular triggering. Finally, a numerical example is presented to demonstrate the validity of the proposed method.  相似文献   

18.
This paper investigates the finite-time stability (FTS) and finite-time stabilization for a class of nonlinear singular time-delay Hamiltonian systems, and proposes a number of new results on these issues. Firstly, an equivalent form is obtained for the nonlinear singular time-delay Hamiltonian systems by the singular matrix decomposition method, based on which some delay-independent and delay-dependent conditions on the FTS are derived for the systems by constructing a kind of novel Lyapunov function. Secondly, we use the equivalent form as well as the energy shaping plus damping injection technique to investigate the finite-time stabilization problem for a class of nonlinear singular port-controlled Hamiltonian (PCH) systems with time delay, and present a specific control design procedure for the systems. Finally, we give several illustrative examples to show the effectiveness of the results obtained in this paper.  相似文献   

19.
In this paper, we consider an initial value problem for linear matrix coefficient systems of the fractional-order neutral differential equations with two incommensurate constant delays in Caputo’s sense. Firstly, we introduce the exact analytical representation of solutions to linear homogeneous and non-homogeneous neutral fractional-order differential-difference equations system by means of newly defined delayed Mittag–Leffler type matrix functions. Secondly, a criterion on the positivity of a class of fractional-order linear homogeneous time-delay systems has been proposed. Furthermore, we prove the global existence and uniqueness of solutions to non-linear fractional neutral delay differential equations system using the contraction mapping principle in a weighted space of continuous functions with regard to classical Mittag–Leffler functions. In addition, Ulam–Hyers stability results of solutions are attained based on fixed-point approach. Finally, we present an example to demonstrate the applicability of our theoretical results.  相似文献   

20.
This paper mainly presents Routh-type table test methods for zero distribution of polynomials with commensurate fractional degrees on the left-half plane, right-half plane and imaginary axis in the complex plane. The proposed tabular methods are derived for extension and generalization of the Routh test, which is widely used in controls for zero distribution of polynomials with integer degrees. Singular cases are discussed and handled efficiently and simply. Necessary and sufficient conditions for the second singular case are completely analyzed in terms of symmetric zeros. A particular property is revealed that a polynomial with commensurate fractional degrees without pure imaginary zero may still be stable in the presence of the second singular case, which is impossible for a real polynomial with integer degrees. Furthermore, we present a test to solve the zero distribution problem with respect to general sector region for polynomials with commensurate fractional degrees and real/complex coefficients. Finally, numerical examples are given to illustrate the correctness and effectiveness of the results. The proposed methods have broad application areas, including various systems, circuits and control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号