首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
下列的式子称为欧拉公式a3+b3+c3-3abc =(a+b+c)(a2+b2+c2-ab-bc-ca) =1/2(a+b+c)[(a-b)2+(b-c)2+(c-a)2] 特别地,(1)当a+b+c=0时,有a3+b3+c3=3abc. (2)当c=0时,欧拉公式变为两数立方和公式. 请看公式的应用: 例1 分解因式(a+b-2x)3-(a-x)3-(b-x)3的结果等于____. (“希望杯”试题) 解因为  相似文献   

2.
本文证明一个立方公式 ,通过这个公式能使一些涉及立方的问题得到轻松的解决 .这个公式是 :a3 b3 c3-abc=(a b c) (a2 b2 c2 -ab-bc-ca) . ①证明 由立方和公式a3 b3=(a b) (a2 -ab b2 )以及和的立方公式 (a b) 3=a3 b3 3ab· (a b) ,则a3 b3 c3- 3abc=(a b) 3 c3- 3ab(a b) - 3abc=(a b c) [(a b) 2 - (a b) ·c c2 ]- 3ab(a b c)=(a b c) [(a b) 2 - (a b)·c c2 - 3ab]=(a b c) (a2 b2 2ab-ac -bc c2 - 3ab)=(a b c) (a2 b2 c2 -ab -bc-ca)公式①是一个十分重要的公式 ,在①中 ,若a b c=0 ,则有a3 b3 c3=3abc. ②以下举…  相似文献   

3.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

4.
命题 若实数 a,b,c满足 a b c=0 ,则  ( ) a3 b3 c3=3abc;( )关于 x的方程 ax2 bx c=0必有一根为 1;( ) b2 ≥ 4ac.证明  ( )由乘法公式 (a b c) (a2 b2 c2 - ab- bc- ca) =a3 b3 c3- 3abc知 ,当 a b c=0时 ,a3 b3 c3=3abc.( )当 x=1时 ,ax2 bx c=a b c= 0 ,故 x=1是方程 ax2 bx c=0的根 .( )当 a≠ 0时 ,ax2 bx c=0是一元二次方程 ,由 ( )知它有实数根 ,故△≥ 0 ,即b2 - 4ac≥ 0 ,b2 ≥ 4ac.当 a=0时 ,b2≥ 4ac显然成立 .这是一个重要的命题 ,它的应用极为广泛 ,利用它来解决条件中出现 (或可化成 ) a b …  相似文献   

5.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

6.
问题(2013年全国高中数学联赛B卷第10题)假设a,b,c>0,且abc=1,证明:a+b+c≤a2+b2+c2.这是一道优秀试题,现给出异于参考解答的几个证明.证法1由均值不等式得a2+1≥2a,b2+1≥2b,c2+1≥2c,a+b+c≥33(abc)1/2=3,相加得a2+b2+c2+3≥2(a+b+c)=a+b+c+(a+b+c)≥a+b+c+33(abc)1/2=a+b+c+3.  相似文献   

7.
定理1 如果a,b∈R那么a~2 b~2≥2ab(当且仅当a=b时取等号) 推论如果a,b∈R~ 那么(a b)/2≥(ab)~(1/2)(当且仅当a=b时取等号) 定理2 如果a、b、c∈R~ 那么a~3 b~3 c~3≥3abc(当且仅当a=b=c时,取等号) 推论如果a、b、c∈R~ 那么(a b c)/3≥(abc)~(1/3)(当且仅当a=b=c时,取等号) 以上两个重要不等式,在六年制高二代数上都作了在内容上彼此独立、在方法上各不相同的证明。教材对前者采用综合法证明,后者采用的是比较法。后者证明就其方法可取,但就其过程来讲倒觉得有些冗长。以上两个定理(含推论)有没有联系呢?回并是肯定的,事实上,它们之间是完全可以互相推证。 (—) 用定理1的推论证明定理2  相似文献   

8.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

9.
在一些不等式问题所给出的条件中,“已知正数a,b,c满足abc=a+b+c+2”出现的频率较高.本文首先给出“abc=a+b+c+2”的几个等价形式,然后探究以“abc=a+b+c+2”或它的等价形式为条件的一些不等式问题,最后探究“abc=a+b+c+2”的几何背景,仅供参考.  相似文献   

10.
<正>近日,笔者发现了一个关于三角形边长的不等式链,现介绍如下.命题在△ABC中,a,b,c分别为其三边长,R,r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥(4-2r/R)abc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.  相似文献   

11.
我们记P(a、b、c)=a~3+b~3+c~3-3abc这个多项式的因式分解公式为: P(a、b、c)=a~3+b~3+c~3-3abc=(a+b +c)(a~2+b~2+c~2-ab-bc-ca), 这个公式在因式分解中,在多项式的恒等变换中以及在解方程中都有一定的应用。  相似文献   

12.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

13.
第 6届 IMO第 2题是设 a,b,c是△ ABC的三边长 ,求证a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≤ 3 abc (1)受启发 ,本文得到 (2 )式的如下对偶形式定理 1 设 a,b,c,r是△ ABC的三边长及内切圆半径 ,则有a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≥ 12 r(a + b + c) (2 )证明 :记 p =12 (a + b + c) ,R为△ ABC的外接圆半径 ,S为△ ABC的面积 ,由海伦公式 S = p (p -a) (p -b) (p -c) =rpabc =4RS =4Rrp得左边 =2 a2 (p -a) + 2 b2 (p -b) +2 c2 (p -c)≥2× 3 3 a2 b2 c2 (p -a) (p -b) (p -c) =63 16R2 r2 p2 .r2 p =…  相似文献   

14.
几道数学竞赛题的简解   总被引:1,自引:0,他引:1  
题1设a、b、c为正实数,且a2 b2 c2 abc=4.证明:3abc≤ab bc ac≤abc 2.(第30届美国数学奥林匹克)证明:由4=a2 b2 c2 abc≥abc 3(abc)32,即abc≤1可知ab ac bc≥3(abc)32≥3abc.由题设知,a、b、c中一定有且只有两个数或者都不大于1,或者都不小于1.不妨设这两个数为a、b.则c(a-1)  相似文献   

15.
第一试  一、选择题(满分42分,每小题7分)1 .已知abc≠0 ,且a b c=0 ,则代数式a2bc b2ca c2ab的值是(  ) .A .3  B .2  C .1  D .0标准答案:原式=-(b c)·abc -(c a)·bca -(a b)·cab =…=3 ,选A .别解1 :∵a3 b3 c3-3abc =…=(a b c)(a2 b2 c2 -ab-bc-ca) =0 ,∴a3 b3 c3=3abc.∴原式=a3 b3 c3abc =3 .别解2 :取a =b=1 ,c=-2 .下略.2 .已知p、q均为质数,且满足5 p2 3 q =5 9,则以p 3 ,1 -p q ,2 p q -4为边长的三角形是(  ) .A .锐角三角形   B .直角三角形C .钝角三角形   D .等腰三角形标准答案1 :…  相似文献   

16.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

17.
设长方体三度为 x、y、z,x≤y≤z,体积 V=xyz,表面积 S=2(xy+yz+zx),棱长 L=4(x+y+z).文[1]得到 V=S=L型空间数不存在;V=S 型的有9个;得到 L=V 型的一个:48;S=L 型的一个:24.本文做进一步探索.探索1 V=L 型空间数.记 a=xy,b=zx,c=yz,则 V=L 化为(1/a)+(1/b)+(1/c)=1/4(a≤b≤c).①(1)可得5≤a≤12,a=5时,21≤b≤40.由于 x=(abc)~(1/2)/c,y=(abc)~(1/2)/b,z=(abc)~(1/2)/c 知 abc 须为平方数.由1/b+1/c=1/20,得 abc=(100b~2)/(b-20),可见须 b-20为平方数,b 可取21,24,29,36,代入方  相似文献   

18.
本文标题给出的公式是一个广为人知的简单事实 .若巧妙地应用它去解有关问题 ,往往能收到意想不到的效果 .下面以竞赛题为例谈应用它解题的技巧 ,供同学们参考 .例 1 已知三个质数之积恰好等于它们和的 5倍 ,则这三质数为 .解 设这三个质数为a、b、c ,由题意得 :abc =5(a+b +c) ,根据质数的定义知 :a、b、c中有一个等于 5,不妨令a=5,于是bc =5+b +c即 (b - 1) (c- 1) =6 ,显然b≠c ,不妨设b>c,则 b - 1=6c - 1=1或 b - 1=3c - 1=2解得 b =7c=2 或 b =4c=3(不符合题意 ,舍去 )故所求质数为 2、5、7.例 2 求所有实数k ,使方程kx2 + (k+ 1)x…  相似文献   

19.
实数a,b,c满足a+b+c=0,abc=1,求证:a,b,c三数中必有一数大于3/2。  相似文献   

20.
在解题过程中 ,我们经常遇到形如a +b +c =0的条件 ,笔者在教学中发现 ,在此条件下有许多简捷、优美的结论 ,且有着广泛的应用。为此 ,本文探讨在条件a +b+c=0下的结论及相应的解题功能 ,供参考。1 结论结论 1 若a +b +c =0 ,则b2 ≥ 4ac或a2 ≥ 4bc或c2 ≥ 4ab。证明 因为a +b +c=0 ,所以b =-(a +c) ,b2 =(a +c) 2 =a2 +c2 +2ac≥ 2ac+2ac=4ac ,即b2 ≥ 4ac,同理可得a2 ≥ 4bc,c2 ≥ 4ab ,命题得证。结论 2 若a +b+c=0 ,则a3+b3+c3=3abc。证明 因为a +b +c=0 ,所以有a +b =-c,(a +b) 3=-c3,即a3+3a2 b +3ab2 +b3+c3=0 ,也即a3+3ab(a +…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号