首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>我们在学习"全等三角形"时,常会遇到这样的一个基本图形:如图1,等边ABC与等边DCE,在直线BE同一侧,连结BD,AE,交于F点.则易证BCD≌ACE.%CE N DF M B A图1现在的问题是,我们由此还能得到其它结论吗?设BD,AC交于M点,AE,DC交于N点,我们可以得到如下结论:结论一∠DBC=∠EAC,∠BDC=∠AEC,BD=AE.  相似文献   

2.
例1已知:四边形ABCD中,对角线AC与BD交于点O,AC=BD,M、N分别是AB、CD的中点,MN交BD、AC分别于点E、F求证:OE=OF.分析:如图1,要证OE=OF,只要证∠OEF=∠OFE,即可.取AD中点G,连接MG、NG,则有MG∥BD,NG∥AC,从而有∠OEF=∠GMN,∠OFE=∠GNM,又MG=12BD,NG=21AC,而AC=BD,故有MG=NG,从而有∠GMN=∠GNM,故可得∠OEF=∠OFE.例2如图2,△ABC中,∠ACB=2∠B,AD⊥BC于点D,M是BC的中点,求证:MD=21AC.分析:取AB中点N,连出△ABC的中位线MN,则有MN=21AC,所以只要证MD=MN即可,连接ND,则ND=21AB=BN,从而…  相似文献   

3.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

4.
1.如图,在五边形ABCDE中,∠BAC=∠CAD=∠DAE,∠ACB=∠ADC=∠AED=90°,F为CD的中点,求证:AF、BD、CE三线共点.(高中联赛级,陕西兴平,吕建恒,713100)  相似文献   

5.
三角形中位线定理是一个很重要的定理,用它来证明多中点问题,经常要用“取中点,连中点得中位线”的方法,但在何处取中点呢?这个问题需要认真地研究.请看下面的例题.例1如图1,在△ABC中,点D、E分别在AB、AC上,且DB=EC,M、N分别为BE、CD的中点,直线MN交AB于P点,交AC于Q点,求证:AP=AQ.证明:取BC的中点F,连MF、NF,则NF∥DB,MF∥EC,且NF=12DB,MF=12EC.因为DB=EC,所以MF=NF,∠1=∠2.又因为∠1=∠4,∠2=∠3,所以∠3=∠4,所以AP=AQ.说明:证明过程简明易懂.但是有不少同学可能会问:为什么会想到要取BC的中点呢?这是因为D…  相似文献   

6.
等腰三角形是一种特殊的三角形,它具有普通三角形的一切性质,同时还有自己的特性。所以在某些图形中,若能构造出合适的等腰三角形,利用等腰三角形的性质及其判定,往往能使问题迎刃而解。一、作腰构造等腰三角形1.如果题目中出现直角三角形斜边上的中点,常作出斜边上的中线,构成等腰三角形。例1:如图1,四边形ABCD中,∠ABC=∠ADC=90°,点E、F分别是对角线AC、BD的中点,求证:EF⊥BD。证明:连结BE、DE∵∠ABC=90°,E为AC中点,∴BE=12AC同理ED=12AC∴BE=ED又∵F为BD中点∴EF⊥BD2.如果题目中出现某线段垂直平分线,不妨作腰构…  相似文献   

7.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

8.
在证明三角形全等时,有些同学常出现种种错误.下面举例说明,以引起注意.例1已知:如图1,AC⊥BC,DC⊥EC,AC=BC,DC=EC,求证:∠D=∠E.错证:在△ACE与△CBD中,∵AC⊥BC,DC⊥EC,∴∠ACB=∠ECD=90°,AC=BC,DC=EC.∴△ACE≌△CBD.∴∠D=∠E.评析:上面的证明中,错误地应用了“SAS”,但∠ACB与∠ECD并不是这一对三角形中的内角.也就不是AC与CE、BC与CD的夹角,错误原因是未能深刻理解“SAS”判定方法.!正确证明:∵AC⊥BC,DC⊥EC,∴∠ACB=∠ECD=90°.∴∠ACE=∠BCD.在△ACE与△CBD中,∵AC=BC,∠ACE=∠BCD,…  相似文献   

9.
一、利用全等三角形的性质证明例1 已知:如图1,D、E在线段BC上,AD=AE,BD=CE.求证:∠B=∠C.证明:∵AD=AE,∴∠1=∠2,∴∠ADB=∠AEC在△ABD和△ACE中,BD=CE,∠ADB=∠AEC,AD=AE,∴△ABD≌△ACE(SAS).∴∠B=∠C.  相似文献   

10.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

11.
一些几何问题中常常出现有关角平分线的条件 ,能否恰当利用角平分线巧作辅助线 ,往往成为解题的关键 .下面举例说明如何利用角平分线作辅助线 .一、过角平分线上的一点作一边的平行线构造等腰三角形 .例 1 如图 1 ,在 ABC中 ,∠B、∠C的平分线交于I ,过I点平行于BC的直线分别交AB、AC于D和E .求证 :DE =BD +EC .证明 ∵BI平分∠ABC ,∴∠ABI=∠IBC .又∵DE∥BC ,∴∠DIB =∠IBC ,∴∠DBI =∠DIB ,∴DI=DB .同理 :EI=EC ,∴DE =DB+EC .评注 本题根据角平分线的定义 ,过其上一点作角的一边的平行线 ,则又根据平…  相似文献   

12.
肖世兵 《数学教学》2012,(5):45-47,50
原题如图1,已知等腰直角三角形ABC和等腰直角三角形AED中,∠AED=∠ACB=90°,点D在AB上,连结EC,M、N分别为DB、EC的中点.求证:MN=1/2CE.  相似文献   

13.
在1997年安徽省初中数学竞赛中,有这样一道题:例1如图1,在△ABC中,∠BAC=90°AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.分析:过C作CM⊥AC交AF延长线于  相似文献   

14.
20 0 3年全国初中数学联赛第二试第二题是 :在△ABC中 ,D为AB的中点 ,分别延长CA、CB到点E、F ,使DE =DF .过E、F分别作CA、CB的垂线 ,相交于点P .求证 :∠PAE =∠PBF .这是一道难度适中 ,思路清晰的纯平面几何题 ,命题组给出了一种基本证法 .为了开阔学生的视野 ,下面再给出本题的两种新证法 ,以飨读者 .证法 1 :如图 1 ,延长FD到G ,使DG =FD ,连结AG、EG、EF .∵AD =BD ,∠ADG =∠BDF ;∴△ADG≌△BDF ,∴AG =BF ,∠DAG =∠DBF .又PE⊥CE ,PF⊥CF ,∴C、E、P、F四点共圆 .∴∠EPF =1 80°-∠C .又∠DA…  相似文献   

15.
再谈中点     
正笔者曾在贵刊2010年第7期发表《由中点我们能联想到什么》一文,文章以两道中考压轴题为例,介绍了中点的四种用法,今再补充两种用法.以飨读者.一、构造全等三角形例1(河北省中考题)在图1(1)~图1(3)中,直线MN与线段AB相交于点O,∠1=∠2=45°,  相似文献   

16.
求二面角的大小是历届高考的重点内容之一,其关键是要作出二面角的平面角,这恰好是不少同学感到头疼的问题.下面介绍几种作二面角的平面角的常用技巧.1抓住共底的等腰三角形作平面角如果2个共底边的等腰三角形ABC和DBC分别在二面角αlβ的2个半平面上,则可作出BC边的中点E,连结AE、DE,根据等腰三角形的性质可知,∠AED为二面角αlβ的平面角.例1如右图所示,已知平行六面体ABCDA1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°.(1)证明:C1C⊥BD;(2)假定CD=2,CC1=3/2,记面C1BD为α,面CBD为β,求二面角αBDβ的平面…  相似文献   

17.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

18.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

19.
同学们在学习几何时,若能借助某些直线、射线(如角平分线、垂线)为对称轴构造对称图形,便会给解题带来极大方便,下面介绍这类几何题的思路及方法。一、以角平分线为对称轴构造图形图1例1已知,如图1,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE,求证:CE=21BD.分析:因为角是轴对称图形,角平分线是对称轴,故根据对称性作出辅助线,不难发现CE=21CF,再证明BD=CF即可。证明:延长CE和BA交于点F∵∠1=∠2BE=BE∠BEC=∠BEF∴△BEC≌△BEF∴CE=EF=21CF∴∠1+∠F=∠3+∠F=90°∴∠1=∠3又∵AB=AC,∠BAD=∠CAF∴△ABD…  相似文献   

20.
例1 如图1,AB=AC,∠C=2∠A,BD是AC边上的高,求∠DBC的度数. 解:因为AB=AC, 所以∠ABC=∠C, 设∠A=x,则∠ABC=∠C=2x. 由三角形内角和定理: x+2x+2x=180. 解得x=36°,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号