首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
解题过程中 ,根据问题条件 ,构造合适的函数 ,利用熟知的函数的性质 (例如单调性、奇偶性 )可巧妙的解答近几年出现的高考及国内外数学竞赛试题 .一、巧解方程 (组 )例 1 解方程 ( x2 - 2 0 x + 38) 3 =x3 - 4x2 + 84 x- 152解 :原方程可变形为 ( x2 - 2 0 x + 38) 3 + 4( x2 -2 0 x + 38) =x3 + 4x构造三次函数 f ( x) =x3 + 4x从而原方程可化为 f ( x2 - 2 0 x + 38) =f ( x)因为 f ( x) =x3 + 4x在 R上单调递增所以 x2 - 2 0 x + 38=x即 x2 - 2 1x + 38=0解得 x1=2 ,x2 =19.例 2  ( 1997年高中数学联赛试题 )设 x,y为实数 ,且满足 ( x…  相似文献   

2.
根据题设条件和题意要求 ,巧构函数 ,活用函数的单调性 ,实现问题转化 .由此 ,既可简化运算过程 ,又可明快证明结论 ;既可探索解题捷径 ,又可发现解题方法 .本文就此举例探究 .1 构造函数方程例 1 解方程 4x +2 -7-x +3 =0解 :由观察可知 ,x的取值范围为 :-2≤ x≤ 7令 F ( x) =4x +2 -7-x +3 ,因为在区间 [-2 ,7]上 ,f ( x) =4x +2单调递增 ,g( x) =7-x单调递减 .所以 F ( x) =4x +2 -7-x +3在 [-2 ,7]上单调递增 ,又 F ( -2 ) =0 ,所以由函数单调性可知 ,原方程的解为 x =-2 .2 构造函数解不等式例 2 解不等式 3 x +1>3 -x解 :构造…  相似文献   

3.
正一元高次方程在代数方程中占有重要地位.在本文中,给出了几类一元高次方程的解法.1型如ax2n+1+bx2n+ax2n-1+bx2n-2+…+ax+b=0的方程.例1解方程3x5+5x4+3x3+5x2+3x+5=0解:原方程可同解变形为3x(x4+x2+1)+5(x4+x2+1)=0,即(3x+5)(x4+x2+1)=0.  相似文献   

4.
在解方程(组)的过程中,如能巧妙构造函数,往往能化难为易,出奇制胜,达到事半功倍之效. 例1 解方程(x2-20x 38)3=x3-4x2 84x-152.  相似文献   

5.
第一课时(共2课时) 教材内容:简单的高次方程。教学目的:①使学生理解一元高次方程的概念,掌握一些持殊的一元高次方程的解法; ②通过例题的分析讲解,培养和提高学生分析问题的能力。教学过程: (一) 复习,学生板演①解方程x~2-2x-15=0; ②解方程y~2-6y+5=0。 (二) 讲授新课 1.一元高次方程的概念写出方程:x~3-2x~2-15x=0。 x~3-4x~2-x+4=0。 x~4-6x~2+5=0。提问:上列各方程未知数的个数和未知数的最高次数。看书,给出一元高次方程的定义,板书课题。 2.简单的高次方程的解法  相似文献   

6.
在初中代数的习题中 ,常会遇到一些特殊的高次方程 ,如用常规方法来解 ,过程一般较为繁琐 ,且容易出错。现例举出来 ,供同学们参考。一、中值变换例 1 解方程 :x4+ (x - 2 ) 4 =82 .分析 :直接展开较繁 ,取x与 (x - 2 )的算术平均数设为 y ,进行中值变换。解 :令x - 1 =y ,则原方程变为 :( y + 1 ) 4 + ( y - 1 ) 4 =82展开合并得2 y4+ 1 2 y2 + 2 =82 即 y4+ 6y2 - 40 =0∴ ( y2 + 1 0 ) ( y2 - 4) =0∴y2 =- 1 0 (舍去 ) ,y2 =4 ∴y =± 2∴x - 1 =± 2 ∴x1 =3 x2 =- 1二、倒数变换例 2 解方程 :x4- 3x3- 2x2 - 3x + 1 =0 .分析 :…  相似文献   

7.
初中数学试题常常有解方程(组)的类型,这类方程通常含有根式或分式。若平方去根号或去分母都会产生高次方程,很难解决。对这类方程,一定要认真观察,看看有没有一元二次方程的背景,然后用换元法来解。今以全国各地初中毕业、升学考试数学试题为例来说明。例1.解方程x2x2-3x+5√+3x+1=3x+1分析x2-3x-1-x2-3x+5√=0观察发现根号内的(x2-3x)项是有的,移项后再添上5即可。解:原方程可化为x2-3x+5-x2-3x+5√-6=0令x2-3x+5√=y,则有y2-y-6=0解得y1=-2,y2=3当y1=-2时,x2-3x+5√=-2,此方程无解。当y1=3时,x2-3x+5√=3,解这个方程得x1=4,x2=-1。经检验…  相似文献   

8.
解分式方程的基本方法是在方程两边都乘以各分式的最简公分母,约分后化为整式方程而求解.但对于有些分式方程,若根据其结构特征,采用某些特殊的解法,可以使解题过程变得更简捷.下面我们来看几个具体的例子.一、移项合并法例1解方程6=x-x.x-6x-6解:移项,得x=x-6,即x=x-6.x-6x-6x-6因为x-6,所以x=1.≠0经检验,是原方程的根.x=12 x=x-2.x练习解方程x-2(答案:1)二、分子相等法例2解方程4=5.x 32x 3解:原方程可化为20=20,即5(x 3)4(2x 3)5(x 3)=4(2x 3).解得x=1.经检验,是原方程的根.x=1练习解方程2=3.x 12x 3(答案:-3)三、等式性质法例3解方程x-…  相似文献   

9.
一元高次方程作为方程的一部分,对我们后续的学习起着相当重要的作用。解一元高次方程的基本思路是降次,降次的基本方法是因式分解及换元法。例1解方程x~4-x~3-6x~2+6x=0。分析方程左边是个四次四项式,先提取公因式x,再合理地分组进行分解,从而起到将方程降次的目的。  相似文献   

10.
一、运用算术平方根的性质例1 解方程解: 原方程无解. 二、运用配方法例2解方程x2-4x+5=0. 解:原方程可化为x2-4x+4=-1.  相似文献   

11.
在解某些含括号的高次方程时 ,有的同学常常见到括号就去掉 ,总习惯于将方程中的多项式按降幂排好后再设法求解 .岂不知 ,这样的“习惯”处理有时易造成简题繁解 .例 解方程 :(x2 -x -3 ) 2 -(x2 -x -3 ) =x +3 .解法 1:由原方程得(x4+x2 +9-2x3 -6x2 +6x) -(x2 -x -3 )=x +3 .去括号 ,整理得x4-2x3 -6x2 +6x +9=0 .拆项为x4-2x3 -3x2 -3x2 +6x +9=0 .则 (x2 -2x -3 ) (x2 -3 ) =0 .解得x1 =-1,x2 =3 ,x3 =3 ,x4=-3 .小结 :解法 1及其结果无疑都是正确的 ,但其求解过程较繁琐 ,尤其是其求解过程中的“拆项”有一定的难度 ,一些同学往往不能…  相似文献   

12.
阅读理解能力是初中数学课程追求的重要目标之一.本文特选了几例与方程有关的阅读理解题,供参考.一、阅读解题过程,总结思想方法例1阅读下面的材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2.原方程化为y2-5y+4=0①.解得y1=1,y2=4.当y=1时,x2-1=1,∴x=±2;当y=4时,x2-1=4,∴x=±5.∴原方程的解为x1=2,x2=-2,x3=5,x4=-5.解答问题:(1)填空:在由方程得到①y2-5y+4=0的过程中,利用法达到了降次的目的,体现了的数学思想.(2)解方程(x2-x)2-4(x2-x)-12=0,若设y=x2-x,则原方程可化为.解(1)换元:转化;(2)y2…  相似文献   

13.
解高次方程的基本思路是“降次”.初三代数课本介绍了“因式分解”和“换元”两种基本方法.下面再介绍某些特殊的高次方程的几种解法. 一、将已知数和未知数换位例1 解方程 x~4-x~2+6x-9=0. 解将原方程变形为“3”的二次方程  相似文献   

14.
一、化简、求值例1化简26√2√+3√+5√.解:原式=2·2√·3√2√+3√+5√=(2√+3√)2-(5√)22√+3√+5√=(2√+3√+5√)(2√+3√-5√)2√+3√+5√=2√+3√-5√.例2若x4+1x4=2,求x+1x的值.解:由x4+1x4=2,配方,得(x2+1x2)2=4,所以x2+1x2=2.再配方,得(x+1x)2=4,所以x+1x=±2.二、分解因式例3分解因式x4+4.解:原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).□郭安才三、解方程(组)例4解方程2x2+3y2-4xy-6y+9=0.解:原方程可变形为2(x-y)2+(y-3)2=0,∵2(x-y)2≥0,(y-3)2≥0,∴只有x-y=0,y-3=0时,原方程成立.解得x=3,y=3.故原方程的解是x=3,…  相似文献   

15.
用适当方法构造与原问题有关的方程,利用方程的知识使原题获解,此为“辅助方程法”。一、解方程(组) 例1 解关于x的方程 x~4 6x~3-2(a-3)x~2 2(3a 4)x 2a a~2=0 解:化为a的方程: a~2-2(x~2-3x-1)a (x~4-6x~3 6x~2 8x)=0解得a=x~2-4x,a=x~2-2x-2。故得原方程的解x_(1,2)=2±4~(1/2) a,x_(3,4)=1±(3 a)~(1/2)(注;a<-3时,有虚根)  相似文献   

16.
贵刊 2 0 0 0年第 10期《运用数学思想方法解含参不等式》一文中 ,例 3的解答是错误的 ,现将“例 3”及“解答”与“评注”抄录如下 :例 3 若 a∈ [-1,3 ] ,解不等式 x2 -ax>3 x -2 a +1解 :原不等式变形为 ( 2 -x) a +x2 -3 x-1>0构造函数 f ( a) =( 2 -x) a +x2 -3 x -1,当 x =2时 ,不等式显然不成立 .由 a∈ [-1,3 ] ,且 f ( a) >0 ,知f ( -1) =x2 -2 x -3 >0f ( 3 ) =x2 -6x +5 >0解之得 x >5或 x <-1.评注 :本例以辩证转化思想为指导 ,把参变元 a视为主元 ,将变元 x看成常量 ,构造关于参数的一次函数 ,利用单调性求解 ,此法极其巧思 .…  相似文献   

17.
在解高次方程时,往往因未知数的次数较高,使得求解过程比较复杂,为了避免这一点,这里介绍一种解一类高次方程的巧妙方法——常量代换法。即把未知量暂时看作常数而把某一次数较低的特殊常量作为未知量,得到一个关于这个特殊常量的方程,解此方程即得这个特殊常量用未知数的代数式表示的方程,再解此方程,即得原方程的解,下面举例加以说明。 [例1] 解方程x~3 2(3~(1/2))x~2 3x 3~(1/2)-1=0 这是三次方程,且系数中含有无理数。不易求解,若反过来把x看作已知数,3~(1/2)看作未知数t,  相似文献   

18.
问题的提出: 解方程2(67)(34)(1)6xxx =. 解 原方程可化为 2(67)(68)(66)72xxx =, 设2(67)ax= , 2(68)(66)(67)1bxxx= = -. 显然()1ab -=, ()72ab-=-. 从而可构造一元二次方程2720yy--=则,ab-为该方程的两根. 解得8y=-或9y=,那么8a=-或9a=.即2(67)8x =-(舍去)或2(67)9x =,进而求得12/3x=-或25/3x=-. 分析本题的解法,我们发现本题并没有直接给出两数之和,也没有给出两数之积,原方程通过变形,运用字母代换数字,通过韦达定理来构造方程,使问题化难为易.本文把这种解法推广到一般结论,探讨这类一元高次方程在什么条件下可以运用这种解法.…  相似文献   

19.
解:由反函数的意义知,求f~(-1)(1)的值,相当于解方程f(x)=1,即解方程1g(x~2 11x 8)-1g(x 1)=1。 解这个方程,得x_1=-2,x_2=1,检验知x=-2是增根,所以,x=1是原方程的解,故f~(-1)(1)=1。  相似文献   

20.
函数是中学数学中永恒的主题,并且它与方程、不等式等内容的联系非常密切.本文针对一类含参变量方程和不等式问题进行探讨,通过利用函数的有关性质,使这些问题化难为易.一、构造函数法例1对于0≤x≤1,不等式(x-(1)log3a)2-6xlog3a x 1>0恒成立,求a的取值范围.解:构造函数(f x)[  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号