首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
数域P上的一元二次多项式ax~2+bx+c(a≠0)在数域P上能够分解的充要条件是(b~2-4ac)~(1/2)∈P,并且当(b~2-4ac)~(1/2)∈P时,ax~2+bx+c=a[x+(b-(b~2-4ac)~(1/2))/2a)][x+(b+(b~2-4ac)~(1/2))/2a]。可是在什么条件下,数域P上的二元二次多项式f(x,y)=ax~2+bxy+cy~2+dx+ey+f (Ⅰ) (a,b,c不同时等于零)在数域P上能够分解呢?如能分解,该怎样分解呢?本文详细讨论这两个问题。  相似文献   

2.
题目 已知a是实系数二次方程ax~2 bx c=0的一个虚根,且 a~3 ∈R,求证:b~2=ac. 这道题散见于各种数学书刊,但给出的解法单一。若引导学生从多种角度思考,认真挖掘其解法,却不失为培养学生发散思维能力的好素材。 方法1 ∵a,b,c是实数且a≠0,又a是虚数,∴△=b~2-4ac<0,由求根公式得x=(-b±(-△i)~(1/2))/2a,不妨设a=(-b (-△i)~(1/2))/2a  相似文献   

3.
定理二次函数y=ax2+bx+c的值域是[0,+∞)的充要条件是a>0且b2-4ac=0. 证明因为y=ax2+bx+c=a(x+b/2a)2+4ac-b2/4a,x∈R,所以二次函数y=ax2+bx+c的值域是[0,+∞)←→y的最小值是0,无最大值←→a>0且b2-4ac=0.  相似文献   

4.
屈昕 《初中生辅导》2015,(30):22-25
数学解题能力的提高,需要借助丰富的解题经验.适当记住一些简洁的结论,可以快速抓住问题的本质,简化思维过程,提高解题效率. 在学习一元二次方程的过程中,我们可以得到下面的结论: 一、设x1、x2是一元二次方程ax2+ bx+c=0(a≠0)的两实根,那么x1+x2=-b/a,x1x2 =c/a 这是因为,当b2-4ac≥0时,一元二次方程的两根为-b+√b2-4ac/2a和-b-√b2-4ac/2c.  相似文献   

5.
我们平时学过的公式、法则等如果长时间不用,难免会有遗忘的现象,但想不起来也不必太着急,因为我们可以静下心来回忆一下公式的推导过程,从而使公式再现.※掌握公式的来龙去脉如:一元二次方程的求根公式,是通过先配方、再开平方的方法求得的,其推导过程如下:ax2+bx+c=0(a≠0)x2+ba x+ac=0x2+ba x=-cax2+ba x+(2ba)2=(2ba)2-ac(x+2ba)2=b24-a42ac当b2-4ac<0时,#b2-4ac无意义,所以x无解;当b2-4ac≥0时,x+2ba=±#b22-a4ac,即x1=-b+#2ba2-4ac,x2=-b-#2ba2-4ac.而二次函数y=ax2+bx+c(a≠0)的顶点坐标公式可以推导如下:y=ax2+bx+cy=a(x2+ba x)+cy=…  相似文献   

6.
对于不等式的证明 ,课本着重介绍了比较法、综合法、分析法 .其实 ,构造二次函数f(x) =ax2 +bx +c(a>0 ) ,利用f(x) ≥ 0恒成立的充要条件Δ≤ 0和 f(x) >0恒成立的充要条件Δ<0来证明 ,也是一种行之有效的方法 .下面以新教材第二册 (上 )课本中的几个习题为例加以说明 .一、若 f(x) =ax2 +bx+c≥ 0 (a>0 ) ,则Δ =b2 -4ac≤ 0例 1 求证 :(ac +bd) 2 ≤ (a2 +b2 ) (c2 +d2 ) .证明 构造二次函数 f(x) =(a2 +b2 )x2 +2 (ac+bd)x +(c2 +d2 ) .当a ,b全为零时 ,不等式显然成立 .设a ,b不全为零 .∵a2 +b2 >0且 f(x) =(ax+c) 2 +(bx+d) 2 ≥ 0…  相似文献   

7.
提起“b2-4ac”,同学们立即会想到它与一元二次方程ax2+bx+c=0(a≠0)有着密切关系.但笔者通过对近几年国内外数学竞赛题的研究发现它在一元二次方程以外也有应用.首先提出:命题当a+b+c=0时,则有b2-4ac≥0,即b2≥4ac.证明由a+b+c=0得b=-(a+c),所以b2-4ac=[-(a+c)]2-4ac  相似文献   

8.
在解题过程中 ,我们经常遇到形如a +b +c =0的条件 ,笔者在教学中发现 ,在此条件下有许多简捷、优美的结论 ,且有着广泛的应用。为此 ,本文探讨在条件a +b+c=0下的结论及相应的解题功能 ,供参考。1 结论结论 1 若a +b +c =0 ,则b2 ≥ 4ac或a2 ≥ 4bc或c2 ≥ 4ab。证明 因为a +b +c=0 ,所以b =-(a +c) ,b2 =(a +c) 2 =a2 +c2 +2ac≥ 2ac+2ac=4ac ,即b2 ≥ 4ac,同理可得a2 ≥ 4bc,c2 ≥ 4ab ,命题得证。结论 2 若a +b+c=0 ,则a3+b3+c3=3abc。证明 因为a +b +c=0 ,所以有a +b =-c,(a +b) 3=-c3,即a3+3a2 b +3ab2 +b3+c3=0 ,也即a3+3ab(a +…  相似文献   

9.
题目设二次函数y=(a+b)x~2+2cx-(a-b)。其中a、b、c分别为ΔABC的三边,当x=-(1/2)时,二次函数的最小值为-(a/2)。试判断ΔABC的形状。(1994年甘肃省中考试题) 解由题意可设二次函数的解析式为 y=(a+b)(x+1/2)~2-(-(a/2)) =(a+b)x~2+(a+b)x+(b-a/4), 又∵y=(a+b)x~2+2cx-(a-b), 比较系数,得{a+b=2c, {b-a/4=-(a-b).解得 a=b=c。  相似文献   

10.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

11.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

12.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

13.
一、问题的提出一元二次方程ax~2+bx+c=0,其中a、b、c均为实数,其解为:x_(1,2)=(-b±(b~2-4ac)~(1/2))/2a 我们知道,在实数范围内,当b~2-4ac>0时,方程有两个不同的实数解;当b~2-4ac=0时,方程有两个相同的实数解(或有一个二重实数解)。其解的几何解释分别如图1中(a)、(b)所示。  相似文献   

14.
2004年全国初中数学联赛第14题及解答如下:已知a<0,b≤0,c>0且b2-4ac=b-2ac,求b2-4ac的最小值.解 令y=ax2 bx c,由a<0,b≤0,c>0,判别式Δ=b2-4ac>0,所以这个二次函数的图象是一条开口向下的抛物线,且与x轴有两个不同的交点A(x1,0)、B(x2,0).因为x1x2=ca<0,不妨设x1相似文献   

15.
关于一元二次方程的两根之和m=x1 x2=-ab、两根之积n=x1x2=ac是大家都熟悉的,那么一元二次方程的两根之比λ和两根之差d与系数的关系又是怎样的呢?经过探索,可得定理1如果一元二次方程ax2 bx c=0(a≠0,c≠0)得两根之比为λ,则有(λ 1)2λ=abc2.证明由题设得(λ λ1)2=λ2 2λ 1λ=λ 1λ 2=xx12 xx12 2=x12 2x1x2 x22x1x2=(x1x 1xx22)2将韦达定理代入(1)得(λ λ1)2=(-cab)2a=abc2.定理2如果一元二次方程ax2 bx c=0(a≠0)两根之差的绝对值为d,则有d=|aδ|(其中δ=b2-4ac).证明对称性,不妨设x1=21a(-b b2-4ac),x2=21a(-b-b2-4ac),所以d=|x1-x…  相似文献   

16.
抛物线y=ax2 bx c(a≠0),当Δ=b2-4ac>0时,它与x轴必有不同的两个交点,此两点间的距离叫做抛物线截x轴所得弦长.关于抛物线截x轴所得弦长与判别式的关系,我们给出如下性质:定理1 当Δ=b2-4ac>0时,抛物线y=ax2 bx c与x轴交于A(x1,0)、B(x2,0)两点,记d=AB=|x1-x2|,则:Δ=b2-4ac=(ad)2.证明 显然x1、x2是一元二次方程ax2 bx c=0的两根,所以x1 x2=-ba,x1x2=ca.Δ=b2-4ac=a2[(-ba)2-4.ca]=a2[(x1 x2)2-4x1x2]=a2(x1-x2)2=a2(|x1-x2|)2=(ad)2.定理2 当Δ=-4ak>0时,抛物线y=a(x-h)2 k与x轴交于A(x1,0)、B(x2,0)两点,记d=AB=|x1-x2|,则:Δ=-4…  相似文献   

17.
△ =b2 - 4ac叫做一元二次方程 ax2 + bx+ c=0(a≠ 0 )的根的判别式。灵活应用它 ,不仅可以解答一些与一元二次方程有关的问题 ,一些非一元二次方程问题也可获得巧妙解答。一、与一元二次方程有关的问题例 1 若方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,则方程 x2 + ax+ b=0的两根分别是 (   )(A) 0 ,3;(B) 0 ,- 3;(C) 1,4 ;(D) 1。解 :由方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,∴△ =(a- 3) 2 - 4(- 3a- b2 ) - 0 ,∴ (a+ 3) 2 + 4 b2 =0。∵ (a+ 3) 2≥ 0 ,4 b2≥ 0 ,∴ a=- 3,b=0。这时 ,要求的方程即为 x2 - 3x=0∴ x1=0 ,x2 …  相似文献   

18.
命题 若实数 a,b,c满足 a b c=0 ,则  ( ) a3 b3 c3=3abc;( )关于 x的方程 ax2 bx c=0必有一根为 1;( ) b2 ≥ 4ac.证明  ( )由乘法公式 (a b c) (a2 b2 c2 - ab- bc- ca) =a3 b3 c3- 3abc知 ,当 a b c=0时 ,a3 b3 c3=3abc.( )当 x=1时 ,ax2 bx c=a b c= 0 ,故 x=1是方程 ax2 bx c=0的根 .( )当 a≠ 0时 ,ax2 bx c=0是一元二次方程 ,由 ( )知它有实数根 ,故△≥ 0 ,即b2 - 4ac≥ 0 ,b2 ≥ 4ac.当 a=0时 ,b2≥ 4ac显然成立 .这是一个重要的命题 ,它的应用极为广泛 ,利用它来解决条件中出现 (或可化成 ) a b …  相似文献   

19.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

20.
实系数一元二次方程 ax2 + bx+ c=0 ( a≠ 0 )的判别式 Δ=b2 - 4ac是中学数学中的基本内容 ,它在代数和几何中都有着广泛的应用 .下面让我们举些实例 ,说明判别式在解一类平面几何题中的应用 ,以供同行交流参考 .1 判别三角形形状例 1 设△ABC的三边为 a,b,c,并满足 b+ c=4 ,bc=a2 - 6 a+ 1 3,试问△ ABC是什么三角形 ?并证明你的结论 .解 由题意得 b,c是一元二次方程 x2 -4x+ ( a2 - 6 a+ 1 3) =0的两个实数根 ,∴Δ =4 2 - 4( a2 - 6 a+ 1 3)=- 4( a- 3) 2 ≥ 0 .∴ a=3,代入方程得 x2 - 4x+ 4 =0 .∴△ ABC为等腰三角形 .例 2 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号