首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P < 0.05). Support phase duration was higher at forward walking than backward walking (61.2 vs. 59.0%). At initial contact, we showed that during forward walking, the ankle and hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P < 0.001). At final stance, the knee and hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: ?12.2 vs. –14.5º; P < 0.001). The knee angle showed more flexion at forward walking (134.0º) than backward walking (173.1º) (P < 0.001). In conclusion, these results show how forward and backward walking in water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation.  相似文献   

2.
The aim of this study was to observe changes in the kinematics and muscle activities when barefoot running was initially adopted by six habitually shod, recreational rearfoot striking runners. Participants ran on a treadmill shod for 5 min, completed 3 × 10-min intervals of barefoot running and then completed a final minute of shod running at a self-selected pace. Dependent variables (speed, joint angles at foot-contact, joint range of motion (ROM), mean and peak electromyography (EMG) activity) were compared across conditions using repeated measures ANOVAs. Anterior pelvic tilt and hip flexion significantly decreased during barefoot conditions at foot contact. The ROM for the trunk, pelvis, knee and ankle angles decreased during the barefoot conditions. Mean EMG activity was reduced for biceps femoris, gastrocnemius lateralis and tibialis anterior during barefoot running. The peak activity across the running cycle decreased in biceps femoris, vastus medialis, gastrocnemius medialis and tibialis anterior during barefoot running. During barefoot running, tibialis anterior activity significantly decreased during the pre-activation and initial contact phases; gastrocnemius lateralis and medialis activity significantly decreased during the push-off phase. Barefoot running caused immediate biomechanical and neuromuscular adaptations at the hip and pelvis, which persisted when the runners donned their shoes, indicating that some learning had occurred during an initial short bout of barefoot running.  相似文献   

3.
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.  相似文献   

4.
Abstract

The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles.  相似文献   

5.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

6.
姜娟 《沈阳体育学院学报》2012,31(4):122-125,133
运用三维摄像法、图像解析法和数理统计法,对常年分别从事太极拳和健步走运动的男性老年人常速行走的相关指标进行研究,进而比较太极拳与健步走运动对老年人行走稳定性的影响。结果:太极拳组老年人与健步走组老年人在常速行走过程中的步长、步幅、步速、步频、步态周期,以及人体重心在一个步态周期各时相的前后、上下、左右移动的速度方面不存在显著的统计学差异;但太极拳组老年人的髋关节、踝关节活动幅度要明显好于健步走组老年人。结论:太极拳运动对老年人行走时摆动腿抬高的幅度,踝关节背屈能力的保持方面好于健步走运动。  相似文献   

7.
Adductor strain injuries are prevalent in ice hockey. It has long been speculated that adductor muscular strains may be caused by repeated eccentric contractions which decelerate the leg during a stride. The purpose of this study was to investigate the relationship of skating speed with muscle activity and lower limb kinematics, with a particular focus on the role of the hip adductors. Seven collegiate ice hockey players consented to participate. Surface electromyography (EMG) and kinematics of the lower extremities were measured at three skating velocities 3.33 m/s (slow), 5.00 m/s (medium) and 6.66 m/s (fast). The adductor magnus muscle exhibited disproportionately larger increases in peak muscle activation and significantly prolonged activation with increased speed. Stride rate and stride length also increased significantly with skating velocity, in contrast, hip, knee and ankle total ranges of motion did not. To accommodate for the increased stride rate with higher skating speeds, the rate of hip abduction increased significantly in concert with activations of adductor magnus indicating a substantial eccentric contraction. In conclusion, these findings highlight the functional importance of the adductor muscle group and hip abduction–adduction in skating performance as well as indirectly support the notion that groin strain injury potential increases with skating speed.  相似文献   

8.
The aim of this study was to analyse the important kinematic variables in elite men's and women's 20 km race walking. Thirty men and 30 women were analysed from video data recorded during the World Race Walking Cup. Video data were also recorded at four points during the European Cup Race Walking and 12 men and 12 women analysed from these data. Two camcorders operating at 50 Hz recorded at each race for 3D analysis. The two main performance determinants of speed were step length and cadence. Men were faster than women because of their greater step lengths but there was no difference in cadence. A reduction in step length was the initial cause of slowing down with later decreases in speed caused by reductions in cadence. Shorter contact times were important in optimising both step length and cadence, and faster athletes tended to have longer flight times than slower athletes. It was less clear which other kinematic variables were critical for successful walking, particularly with regard to joint angles. Different associations were found for some key variables in men and women, suggesting that their techniques may differ due to differences in height and mass.  相似文献   

9.
Abstract

The influence of speed on trunk exercise technique is poorly understood. The aim of this study was to analyse the effect of movement speed on the kinematics and kinetics of curl-up, sit-up and leg raising/lowering exercises. Seventeen healthy, recreationally trained individuals (13 females and 4 males) volunteered to participate in this study. Four different exercise cadences were analysed: 1 repetition/4 s, 1 repetition/2 s, 1 repetition/1.5 s and 1 repetition/1 s. The exercises were executed on a force plate and recorded by three cameras to conduct a 3D photogrammetric analysis. The cephalo-caudal displacement of the centre of pressure and range of motion (ROM) of six joints describing the trunk and hip movements were measured. As sit-up and curl-up speed increased, hip and knee ROM increased. Dorsal-lumbar and upper trunk ROM increased with speed in the curl-up. Faster cadence in the sit-up exercise had minimal effect on trunk ROM: only the upper trunk ROM decreased significantly. In the leg raising/lowering exercise there was a decrease in the pelvic tilt and hip ROM, and increased knee flexion ROM. During higher speed exercises, participants modified their technique to maintain the cadence. Thus, professionals would do well to monitor and control participants' technique during high-speed exercises to maintain performance specificity. Results also suggest division of speed into two cadence categories, to be used as a reference for prescribing exercise speed based on preferred outcome goals.  相似文献   

10.
ABSTRACT

While foot orthoses are commonly used in running, little is known regarding biomechanical risk potentials during uphill running. This study investigated the effects of arch-support orthoses on kinetic and kinematic variables when running at different inclinations. Sixteen male participants ran at different inclinations (0°, 3° and 6°) when wearing arch-support and flat orthoses on an instrumented treadmill. Arch-support orthoses induced longer contact time, larger initial ankle dorsiflexion, maximum ankle eversion, and knee sagittal range of motion (RoM) (p < 0.05). As incline slopes increased, vertical impact peak and loading rate, stride length, and ankle coronal RoM decreased, but contact time, stride frequency, initial ankle dorsiflexion and inversion, maximum dorsiflexion, initial knee flexion, and ankle sagittal RoM increased (p < 0.05). Furthermore, knee sagittal RoM was lowest when running at an inclination of 3°. The interaction effect indicated that in arch-support condition, participants running at 6° induced higher maximum ankle eversion than running at 0° (p < 0.05), while no differences were found in flat orthosis condition. These findings suggest that the use of arch-support orthoses would influence running biomechanics that is related to injury risks. Running at higher inclination led to more alterations to biomechanical variables than at lower inclination.  相似文献   

11.
Sprinting while towing a sled improves sprinting parameters, however, only kinematic and temporal–spatial variables have been reported. The purpose of this study was to determine how lower extremity joint moment impulses alter when towing a sled compared to normal walking. Twelve participants walked normally, walked while towing a sled with a 50% body weight load attached at the waist, and with a 50% body weight load attached at the shoulders. Joint moment impulses were calculated for the hip, knee, and ankle. A mixed-model ANOVA with a between-subject factor of limb and repeated measures of condition was used to compare differences between limbs and towing conditions for each joint. Towing a sled increased joint moment impulses at the hip, knee, and non-dominant ankle. When compared with normal walking waist attachment increased hip extension moment impulse by 214.5% ( ? 3.31 vs. ? 10.41 Nms/kg), and shoulder attachment increased knee extension moment impulse by 166.9% (4.62 vs. 12.33 Nms/kg). The dominant limb produced greater knee extension moment impulse (p < 0.001), while the non-dominant limb produced greater hip extension (p < 0.001) and ankle plantarflexion moment impulse (p < 0.001) across all conditions. Results suggest that walking while towing may increase hip and knee extension strength.  相似文献   

12.
The effect of varied stride rate upon shank deceleration in running   总被引:1,自引:1,他引:0  
The purpose of this study was to determine the effects of systematic changes in stride rate and length at a given running speed on the peak shank deceleration (PSD) experienced during ground contact. Data were collected from 10 well-trained subjects as they ran on a treadmill at a pace of 3.8 m s-1 (7-min mile-1). Shank deceleration was measured by a lightweight accelerometer which was tightly attached over the distal medial tibia. High-speed films (200 Hz) were taken from a side view to quantify modifications in sagittal plane movement which might have accompanied the stride rate changes. Five stride rate conditions were randomly presented - 10% slower, 5% slower, normal, 5% faster and 10% faster. Average PSD was computed from 10 steps during each condition and testing was repeated on three different occasions. For each session, PSD observed for each condition was normalized to that observed at the normal stride rate in order to minimize the effects of variations in attachment of the accelerometer between and within subjects. The normalized PSD results at each stride rate tested were - normal = 1.0, 10% slower = 1.09, 5% slower = 1.03, 5% faster = 0.96 and 10% faster = 0.91. Significant differences were found between all these means except normal and 5% slower. The kinematic analysis revealed non-significant results for hip, knee and ankle joint angles at touchdown for the various stride rates. Application of the findings to existing analytical models indicated that, for a given running speed, peak impact forces in the ankle and knee joints decreased as stride rate increased.  相似文献   

13.
Analysis of lower limb work-energy patterns in world-class race walkers   总被引:1,自引:1,他引:0  
The aim of this study was to analyse lower limb work patterns in world-class race walkers. Seventeen male and female athletes race walked at competitive pace. Ground reaction forces (1000 Hz) and high-speed videos (100 Hz) were recorded and normalised joint moments, work and power, stride length, stride frequency and speed estimated. The hip flexors and extensors were the main generators of energy (24.5 J (±6.9) and 40.3 J (±8.3), respectively), with the ankle plantarflexors (16.3 J (±4.3)) contributing to the energy generated during late stance. The knee generated little energy but performed considerable negative work during swing (?49.1 J (±8.7)); the energy absorbed by the knee extensors was associated with smaller changes in velocity during stance (r = .783, P < .001), as was the energy generated by the hip flexors (r = ?.689, P = .002). The knee flexors did most negative work (?38.6 J (±5.8)) and the frequent injuries to the hamstrings are probably due to this considerable negative work. Coaches should note the important contributions of the hip and ankle muscles to energy generation and the need to develop knee flexor strength in reducing the risk of injury.  相似文献   

14.
Abstract

The aim of this study was to test the correlation between knee-to-hip flexion ratio during a single leg landing task and hip and knee strength, and ankle range of motion. Twenty-four male participants from a professional soccer team performed a continuous single leg jump-landing test during 10s, while lower limb kinematics data were collected using a motion analysis system. After biomechanical testing, maximal isometric hip (abduction, extension, external rotation), knee extension and flexion strength were measured. Maximum ankle dorsiflexion range of motion was assessed statically using the weight bearing lunge test. Pearson correlation coefficients were calculated to determine the associations between the predictor variables (knee and hip strength, and ankle ROM) and the main outcome measure (knee-to-hip flexion ratio). Correlation between knee-to-hip flexion ratio and hip abductors strength was significant (r = ?0.47; p = 0.019). No other significant correlations were observed among the variables (p > 0.05). These results demonstrated that a lower hip abductors strength in male soccer players was correlated with a high knee-to-hip flexion ratio during landing from a single leg jump, potentially increasing knee overload by decreasing energy absorption at the hip. The results provide a novel proposal for the functioning of hip muscles to control knee overload.  相似文献   

15.
Females, as compared with males, have a higher proportion of injuries in the foot region. However, the reason for this gender difference regarding foot injuries remains unclear. This study aimed to investigate gender differences associated with rearfoot, midfoot, and forefoot kinematics during running. Twelve healthy males and 12 females ran on a treadmill. The running speed was set to speed which changes from walking to running. Three-dimensional kinematics of rearfoot, midfoot, and forefoot were collected and compared between males and females. Furthermore, spatiotemporal parameters (speed, cadence, and step length) were measured. In the rearfoot angle, females showed a significantly greater peak value of plantarflexion and range of motion in the sagittal plane as compared with males (effect size (ES)?=?1.55 and ES?=?1.12, respectively). In the midfoot angle, females showed a significantly greater peak value of dorsiflexion and range of motion in the sagittal plane as compared with males (ES?=?1.49 and ES?=?1.71, respectively). The forefoot peak angles and ranges of motion were not significantly different between the genders in all three planes. A previous study suggested that a gender-related difference in excessive motions of the lower extremities during running has been suggested as a contributing factor to running injuries. Therefore, the present investigation may provide insight into the reason for the high incidence of foot injuries in females.  相似文献   

16.
This study investigated the three-dimensional (3-D) pedaling kinematics using a noncircular chainring system and a conventional system. Five cyclists pedaled at their preferred cadence at a workload of 300 W using two crank systems. Flexion/extension of the hip, knee and ankle as well as shank rotation, foot adduction/abduction, and pedal angle were measured. Joint range of motion (ROM) and angular displacements were compared between the systems. Sagittal plane ROM was significantly greater (P < 0.05) at the hip (noncircular system = 39 ± 3°; conventional system = 34 ± 4°) the knee (noncircular system = 69 ± 4°; conventional system = 57 ± 10°), and ankle (noncircular system = 21 ± 2°; conventional system = 19 ± 4°) resulting in greater pedal ROM (noncircular system = 43 ± 3°; conventional system = 37 ± 5°) while using the noncircular system. Shank rotation ROM was significantly lower (P < 0.05) while using the noncircular chainring (noncircular system = 10 ± 1°; conventional system = 14 ± 1°). These results support a significant effect of the noncircular chainring system on pedaling kinematics during submaximal exercise.  相似文献   

17.
Abstract

This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s-1. Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s-1). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s-1. Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.  相似文献   

18.
Running on a treadmill is an activity that is novel to many people. Thus, a familiarisation period may be required before reliable and valid determinations of biomechanical parameters can be made. The current study investigated the time required for treadmill familiarisation under barefoot and shod running conditions. Twenty-six healthy men, who were inexperienced in treadmill running, were randomly allocated to run barefoot or shod for 20 minutes on a treadmill at a self-selected comfortable pace. Sagittal-plane kinematics for the ankle, knee and hip, and ground reaction force and spatio-temporal data were collected at two-minute intervals. For the barefoot condition, temporal differences were observed in peak hip flexion and peak knee flexion during swing. For the shod condition, temporal differences were observed for peak vertical ground reaction force. No temporal differences were observed after 8 minutes for either condition. Reliability analysis revealed high levels of consistency (ICC > 0.90) across all consecutive time-points for all dependent variables for both conditions after 8 minutes with the exception of maximal initial vertical ground reaction force loading rate. Participants in both barefoot and shod groups were therefore considered familiarised to treadmill running after 8 minutes.  相似文献   

19.
Dribbling speed in soccer is considered critical to the outcome of the game and can assist in the talent identification process. However, little is known about the biomechanics of this skill. By means of a motion capture system, we aimed to quantitatively investigate the determinants of effective dribbling skill in a group of 10 Under-13 sub-elite players, divided by the median-split technique according to their dribbling test time (faster and slower groups). Foot-ball contacts cadence, centre of mass (CoM), ranges of motion (RoM), velocity and acceleration, as well as stride length, cadence and variability were computed. Hip and knee joint RoMs were also considered. Faster players, as compared to slower players, showed a 30% higher foot-ball cadence (3.0 ± 0.1 vs. 2.3 ± 0.2 contacts · s?1, < 0.01); reduced CoM mediolateral (0.91 ± 0.05 vs. 1.14 ± 0.16 m, < 0.05) and vertical (0.19 ± 0.01 vs. 0.25 ± 0.03 m, < 0.05) RoMs; higher right stride cadence (+20%, < 0.05) with lower variability (< 0.05); reduced hip and knee flexion RoMs (< 0.05). In conclusion, faster players are able to run with the ball through a shorter path in a more economical way. To effectively develop dribbling skill, coaches are encouraged to design specific practices where high stride frequency and narrow run trajectories are required.  相似文献   

20.
Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号