首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The aim of this study was to compare the impact of continuous (CON) and intermittent (INT) heat acclimation protocols on repeat-sprint performance, and to also assess the degree of performance decay following acclimation. Using a pair-matched, between subjects design, 16 trained male team sport athletes were allocated to either INT (8 sessions over 15 days) or CON acclimation (8 sessions over 8 days) groups. Participants performed a heat tolerance test (HTT) involving 60-min of repeat-sprint cycling with a 10-min half time break (in 35.3?±?0.7°C, 60.1?±?4.0%; RH) two days pre- (pre-HTT) and post-acclimation (post-HTT1). Decay was investigated with two further HTT's completed over the next two weeks (post-HTT2 and post-HTT3). Results showed the post-HTT1 performance variables [mean power (pre-HTT; INT?=?1002.07?±?173.74, CON?=?1057.10?±?180.07 / post-HTT1; INT?=?1097.11?±?186.85, CON?=?1163.77?±?184.65 W), mean power (W.kg?1), total work (kJ) and work (J.kg?1)] were greater than pre-HHT (p?p?相似文献   

2.
3.
VO2 fluctuations are argued to be an important mechanism underpinning chronic adaptations following interval training. We compared the effect of exercise modality, continuous vs. intermittent realized at a same intensity, on electrical muscular activity, muscular oxygenation and on whole body oxygen uptake. Twelve participants (24?±?5 years; VO2peak: 43?±?6?mL·?min?1·kg?1) performed (i) an incremental test to exhaustion to determine peak work rate (WRpeak); two randomized isocaloric exercises at 70%WRpeak; (ii) 1 bout of 30 min; (iii) 30 bouts of 1?min work intercepted with 1?min passive recovery. For electromyography, only the CON exercise showed change for the vastus lateralis root-mean-square (+6.4?±?5.1%, P?P?vs. 2.32?±?1.21?mM, respectively, for the CON and INT, P?vs. 356?±?301?sec, respectively, for the CON and INT, P?相似文献   

4.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

5.
This investigation examined the effect of beetroot juice (BR) supplementation, a source of dietary nitrate (NO3?), on cycling time-trial (TT) performance and thermoregulation in the heat. In a double-blind, repeated-measures design, 12 male cyclists (age 26.6 ± 4.4 years, VO2peak 65.8 ± 5.5 mL.kg?1.min?1) completed four cycling TTs (14 kJ.kg?1) in hot (35°C, 48% relative humidity) and euthermic (21°C, 52%) conditions, following 3 days supplementation with BR (6.5 mmol NO3? for 2 days and 13 mmol NO3? on the final day), or NO3depleted placebo (PLA). Salivary NO3? and nitrite, core (Tc) and mean skin temperature (Tsk) were measured. Salivary NO3? and nitrite increased significantly post-BR supplementation (< 0.001). Average TT completion time (mm:ss) in hot conditions was 56:50 ± 05:08 with BR, compared with 58:30 ± 04:48 with PLA (= 0.178). In euthermic conditions, average completion time was 53:09 ± 04:35 with BR, compared with 54:01 ± 04:05 with PLA (= 0.380). The TT performance decreased (< 0.001), and Tc (< 0.001) and Tsk (< 0.001) were higher in hot compared with euthermic conditions. In summary, BR supplementation has no significant effect on cycling TT performance in the heat.  相似文献   

6.
This investigation assessed whether a Technique Refinement Intervention designed to produce pronounced vertical hip displacement during the kicking stride could improve maximal instep kick performance. Nine skilled players (age 23.7 ± 3.8 years, height 1.82 ± 0.06 m, body mass 78.5 ± 6.1 kg, experience 14.7 ± 3.8 years; mean ± SD) performed 10 kicking trials prior to (NORM) and following the intervention (INT). Ground reaction force (1000 Hz) and three-dimensional motion analysis (250 Hz) data were used to calculate lower limb kinetic and kinematic variables. Paired t-tests and statistical parametric mapping examined differences between the two kicking techniques across the entire kicking motion. Peak ball velocities (26.3 ± 2.1 m · s?1 vs 25.1 ± 1.5 m · s?1) and vertical displacements of the kicking leg hip joint centre (0.041 ± 0.012 m vs 0.028 ± 0.011 m) were significantly larger (P < 0.025) when performed following INT. Further, various significant changes in support and kicking leg dynamics contributed to a significantly faster kicking knee extension angular velocity through ball contact following INT (70–100% of total kicking motion, < 0.003). Maximal instep kick performance was enhanced following INT, and the mechanisms presented are indicative of greater passive power flow to the kicking limb during the kicking stride.  相似文献   

7.
This investigation compared the effects of external pre-cooling and mid-exercise cooling methods on running time trial performance and associated physiological responses. Nine trained male runners completed familiarisation and three randomised 5 km running time trials on a non-motorised treadmill in the heat (33°C). The trials included pre-cooling by cold-water immersion (CWI), mid-exercise cooling by intermittent facial water spray (SPRAY), and a control of no cooling (CON). Temperature, cardiorespiratory, muscular activation, and perceptual responses were measured as well as blood concentrations of lactate and prolactin. Performance time was significantly faster with CWI (24.5 ± 2.8 min; = 0.01) and SPRAY (24.6 ± 3.3 min; = 0.01) compared to CON (25.2 ± 3.2 min). Both cooling strategies significantly (< 0.05) reduced forehead temperatures and thermal sensation, and increased muscle activation. Only pre-cooling significantly lowered rectal temperature both pre-exercise (by 0.5 ± 0.3°C; < 0.01) and throughout exercise, and reduced sweat rate (< 0.05). Both cooling strategies improved performance by a similar magnitude, and are ergogenic for athletes. The observed physiological changes suggest some involvement of central and psychophysiological mechanisms of performance improvement.  相似文献   

8.
Physical inactivity is a major contributor to low-grade systemic inflammation. Most of the studies characterizing interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) release from exercising legs have been done in young, healthy men, but studies on inactivity in older people are lacking. The impact of 14 days of one-leg immobilization (IM) on IL-6 and TNF-α release during exercise in comparison to the contralateral control (CON) leg was investigated. Fifteen healthy men (age 68.1?±?1.1?year (mean?±?SEM); BMI 27.0?±?0.4 kg·m2; VO2max 33.3?±?1.6 ml·kg?1·min?1) performed 45?min of two-leg dynamic knee extensor exercise at 19.5?±?0.9 W. Arterial and femoral venous blood samples from the CON and the IM legs were collected every 15?min during exercise, and thigh blood flow was measured with ultrasound Doppler. Arterial plasma IL-6 concentration increased with exercise (rest vs. 45?min, main effect p?p?p?=?.085, effect size 0.28) higher in the IM leg compared to the CON leg (288 (95% CI: 213–373) vs. 220 (95% CI: 152–299) pg·min?1, respectively). There was no release of TNF-α in either leg and arterial concentrations remained unchanged during exercise (p?>?.05). In conclusion, exercise induces more pronounced IL-6 secretion in healthy older men. Two weeks of unilateral immobilization on the other hand had only a minor influence on IL-6 release. Neither immobilization nor exercise had an effect on TNF-α release across the working legs in older men.  相似文献   

9.
Acute ingestion of ketone salts induces nutritional ketosis by elevating β-hydroxybutyrate (βHB), but few studies have examined the metabolic effects of ingestion prior to exercise. Nineteen trained cyclists (12 male, 7 female) undertook graded exercise (8 min each at ~30%, 40%, 50%, 60%, 70%, and 80% VO2peak) on a cycle ergometer on two occasions separated by either 7 or 14 days. Trials included ingestion of boluses of either (i) plain water (3.8?mL?kg?body mass?1) (CON) or (ii) βHB salts (0.38?g?kg?body mass?1) in plain water (3.8?mL?kg body mass?1) (KET), at both 60 min and 15 min prior to exercise. During KET, plasma [βHB] increased to 0.33?±?0.16?mM prior to exercise and 0.44?±?0.15?mM at the end of exercise (both p?.05). Plasma glucose was 0.44?±?0.27?mM lower (p?.01) 30?min after ingestion of KET and remained ~0.2?mM lower throughout exercise compared to CON (p?.001). Respiratory exchange ratio (RER) was higher during KET compared to CON (p?.001) and 0.03–0.04 higher from 30%VO2peak to 60%VO2peak (all p?.05). No differences in plasma lactate, rate of perceived exertion, or gross or delta efficiency were observed between trials. Gastrointestinal symptoms were reported in 13 out of 19 participants during KET. Acute ingestion of βHB salts induces nutritional ketosis and alters the metabolic response to exercise in trained cyclists. Elevated RER during KET may be indicative of increased ketone body oxidation during exercise, but at the plasma βHB concentrations achieved, ingestion of βHB salts does not affect lactate appearance, perceived exertion, or muscular efficiency.  相似文献   

10.
This study examined effects of 4 weeks of caffeine supplementation on endurance performance. Eighteen low-habitual caffeine consumers (<75 mg · day?1) were randomly assigned to ingest caffeine (1.5–3.0 mg · kg?1day?1; titrated) or placebo for 28 days. Groups were matched for age, body mass, V?O2peak and Wmax (> 0.05). Before supplementation, all participants completed one V?O2peak test, one practice trial and 2 experimental trials (acute 3 mg · kg?1 caffeine [precaf] and placebo [testpla]). During the supplementation period a second V?O2peak test was completed on day 21 before a final, acute 3 mg · kg?1 caffeine trial (postcaf) on day 29. Trials consisted of 60 min cycle exercise at 60% V?O2peak followed by a 30 min performance task. All participants produced more external work during the precaf trial than testpla, with increases in the caffeine (383.3 ± 75 kJ vs. 344.9 ± 80.3 kJ; Cohen’s d effect size [ES] = 0.49; = 0.001) and placebo (354.5 ± 55.2 kJ vs. 333.1 ± 56.4 kJ; ES = 0.38; = 0.004) supplementation group, respectively. This performance benefit was no longer apparent after 4 weeks of caffeine supplementation (precaf: 383.3 ± 75.0 kJ vs. postcaf: 358.0 ± 89.8 kJ; ES = 0.31; = 0.025), but was retained in the placebo group (precaf: 354.5 ± 55.2 kJ vs. postcaf: 351.8 ± 49.4 kJ; ES = 0.05; > 0.05). Circulating caffeine, hormonal concentrations and substrate oxidation did not differ between groups (all > 0.05). Chronic ingestion of a low dose of caffeine develops tolerance in low-caffeine consumers. Therefore, individuals with low-habitual intakes should refrain from chronic caffeine supplementation to maximise performance benefits from acute caffeine ingestion.  相似文献   

11.
Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h?1 of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s?1. Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.  相似文献   

12.
The effectiveness of a nap as a recovery strategy for endurance exercise is unknown and therefore the present study investigated the effect of napping on endurance exercise performance. Eleven trained male runners completed this randomised crossover study. On two occasions, runners completed treadmill running for 30?min at 75% ?O2max in the morning, returning that evening to run for 20?min at 60% ?O2max, and then to exhaustion at 90% ?O2max. On one trial, runners had an afternoon nap approximately 90?min before the evening exercise (NAP) whilst on the other, runners did not (CON). All runners napped (20?±?10?min), but time to exhaustion (TTE) was not improved in all runners (NAP 596?±?148?s vs. CON 589?±?216?s, P?=?.83). Runners that improved TTE after the nap slept less at night than those that did not improve TTE (night-time sleep 6.4?±?0.7?h vs. 7.5?±?0.4?h, P?r2 ? =??0.76, P?=?.001). In runners that improved TTE, ratings of perceived exertion (RPE) were lower during the TTE on NAP than CON compared to runners that did not improve (?0.4?±?0.6 vs. 0?±?0, P?=?.05). Reduced exercising sense of effort (RPE) may account for the improved TTE after the nap. In conclusion, a short afternoon nap improves endurance performance in runners that obtain less than 7?h night-time sleep.  相似文献   

13.
This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [Tcore] and skin [Tskin] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6?min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges’ g [95% confidence interval]?+?0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in Tskin (+4.15 [3.1; 5.21]) during exercise, while lower peak Tcore (?0.93 [?1.18; ?0.67]), WBS (?0.74 [?1.18; ?0.3]), and TS (?0.5 [?0.8; ?0.19]) were observed without concomitant changes in ΔEX-Tcore (+0.19 [?0.22; 0.6]), peak Tskin (?0.67 [?1.52; 0.18]), peak HR (?0.14 [?0.38; 0.11]), and RPE (?0.14 [?0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [?0.07; 0.46]) but resulted in greater ΔEX-Tcore (+1.02 [0.59; 1.45]) and ΔEX-Tskin (+0.34 [0.02; 0.67]) without concomitant changes in peak Tcore (?0.1 [?0.48; 0.28]), peak Tskin (+0.1 [?0.22; 0.41]), peak HR (+0.08 [?0.19; 0.35]), WBS (?0.12 [?0.42; 0.18]), TS (?0.2 [?0.49; 0.1]), and RPE (?0.01 [?0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.  相似文献   

14.
This study compares test-retest reliability and peak exercise responses from ramp-incremented (RAMP) and maximal perceptually-regulated (PRETmax) exercise tests during arm crank exercise in individuals reliant on manual wheelchair propulsion (MWP). Ten untrained participants completed four trials over 2-weeks (two RAMP (0–40 W + 5–10 W · min?1) trials and two PRETmax. PRETmax consisted of five, 2-min stages performed at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20). Participants freely changed the power output to match the required RPE. Gas exchange variables, heart rate, power output, RPE and affect were determined throughout trials. The V?O2peak from RAMP (14.8 ± 5.5 ml · kg?1 · min?1) and PRETmax (13.9 ± 5.2 ml · kg?1 · min?1) trials were not different (P = 0.08). Measurement error was 1.7 and 2.2 ml · kg?1 · min?1 and coefficient of variation 5.9% and 8.1% for measuring V?O2peak from RAMP and PRETmax, respectively. Affect was more positive at RPE 13 (P = 0.02), 15 (P = 0.01) and 17 (P = 0.01) during PRETmax. Findings suggest that PRETmax can be used to measure V?O2peak in participants reliant on MWP and leads to a more positive affective response compared to RAMP.  相似文献   

15.
This study examined the effect of hypoxia on growth hormone (GH) release during an acute bout of high-intensity, low-volume resistance exercise. Using a single-blinded, randomised crossover design, 16 resistance-trained males completed two resistance exercise sessions in normobaric hypoxia (HYP; inspiratory oxygen fraction, (FiO2) 0.12, arterial oxygen saturation (SpO2) 82?±?2%) and normoxia (NOR; FiO2 0.21, SpO2 98?±?0%). Each session consisted of five sets of three repetitions of 45° leg press and bench press at 85% of one repetition maximum. Heart rate, SpO2, and electromyographic activity (EMG) of the vastus lateralis muscle were measured throughout the protocol. Serum lactate and GH levels were determined pre-exposure, and at 5, 15, 30 and 60?min post-exercise. Differences in mean and integrated EMG between HYP and NOR treatments were unclear. However, there was an important increase in the peak levels and area under the curve of both lactate (HYP 5.8?±?1.8 v NOR 3.9?±?1.1?mmol.L?1 and HYP 138.7?±?33.1 v NOR 105.8?±?20.8?min.mmol.L?1) and GH (HYP 4.4?±?3.1 v NOR 2.1?±?2.5?ng.mL?1 and HYP 117.7?±?86.9 v NOR 72.9?±?85.3?min.ng.mL?1) in response to HYP. These results suggest that performing high-intensity resistance exercise in a hypoxic environment may provide a beneficial endocrine response without compromising the neuromuscular activation required for maximal strength development.  相似文献   

16.
Abstract

Physiological responses and performance were examined during and after a simulated trampoline competition (STC). Fifteen elite trampoline gymnasts participated, of which eight completed two routines (EX1 and EX2) and a competition final (EX3). Trampoline-specific activities were quantified by video-analysis. Countermovement jump (CMJ) and 20 maximal trampoline jump (20-MTJ) performances were assessed. Heart rate (HR) and quadriceps muscle temperature (Tm) were recorded and venous blood was drawn. A total of 252 ± 16 jumps were performed during the STC. CMJ performance declined (< 0.05) by 3.8, 5.2 and 4.2% after EX1, EX2 and EX3, respectively, and was 4.8% lower (< 0.05) than baseline 24 h post-competition. 20-MTJ flight time was ~1% shorter (< 0.05) for jump 1–10 after EX2 and 24 h post STC. Tm increased (< 0.05) to ~39°C after the warm-up, but declined (< 0.05) 1.0 and 0.6ºC before EX2 and EX3, respectively. Peak HR was 95–97% HRmax during EX1-3. Peak blood lactate, plasma K+ and NH3 were 6.5 ± 0.5, 6.0 ± 0.2 mmol · l?1 and 92 ± 10 µmol · l?1, respectively. Plasma CK increased (< 0.05) by ~50 and 65% 0 and 24 h after STC. In conclusion, a trampoline gymnastic competition includes a high number of repeated explosive and energy demanding jumps, which impairs jump performance during and 24 h post-competition.  相似文献   

17.
We compared the effects of using passive-heat maintenance, explosive activity or a combination of both strategies during the post-warmup recovery time on physical performance. After a standardised warmup, 16 professional rugby union players, in a randomised design, completed a counter-movement jump (peak power output) before resting for 20 min and wearing normal-training attire (CON), wearing a passive heat maintenance (PHM) jacket, wearing normal attire and performing 3 × 5 CMJ (with a 20% body mass load) after 12 min of recovery (neuromuscular function, NMF), or combining PHM and NMF (COMB). After 20 min, participants completed further counter-movement jump and a repeated sprint protocol. Core temperature (Tcore) was measured at baseline, post-warmup and post-20 min. After 20 min of recovery, Tcore was significantly lower under CON and NMF, when compared with both PHM and COMB (P < 0.05); PHM and COMB were similar. Peak power output had declined from post-warmup under all conditions (P < 0.001); however, the drop was less in COMB versus all other conditions (P < 0.05). Repeated sprint performance was significantly better under COMB when compared to all other conditions. Combining PHM with NMF priming attenuates the post-warmup decline in Tcore and can positively influence physical performance in professional rugby union players.  相似文献   

18.
Mouth rinsing using a carbohydrate (CHO) solution has been suggested to improve physical performance in fasting participants. This study examined the effects of CHO mouth rinsing during Ramadan fasting on running time to exhaustion and on peak treadmill speed (Vpeak). In a counterbalanced crossover design, 18 sub-elite male runners (Age: 21?±?2 years, Weight: 68.1?±?5.7?kg, VO2max: 55.4?±?4.8?ml/kg/min) who observed Ramadan completed a familiarization trial and three experimental trials. The three trials included rinsing and expectorating a 25?mL bolus of either a 7.5% sucrose solution (CHO), a flavour and taste matched placebo solution (PLA) for 10?s, or no rinse (CON). The treatments were performed prior to an incremental treadmill test to exhaustion. Three-day dietary and exercise records were obtained on two occasions and analysed. Anthropometric characteristics were obtained and recorded for all participants. A main effect for mouth rinse on peak velocity (Vpeak) (CHO: 17.6?±?1.5?km/h; PLA: 17.1?±?1.4?km/h; CON: 16.7?±?1.2?km/h; P?ηp2?=?0.49) and time to exhaustion (CHO: 1282.0?±?121.3?s; PLA: 1258.1?±?113.4?s; CON: 1228.7?±?98.5?s; P?=?.002, ηp2?=?0.41) was detected, with CHO significantly higher than PLA (P?P?P?>?.05). Energy availability from dietary analysis, body weight, and fat-free mass did not change during the last two weeks of Ramadan (P?>?.05). This study concludes that carbohydrate mouth rinsing improves running time to exhaustion and peak treadmill speed under Ramadan fasting conditions.  相似文献   

19.
The purpose of our study was to examine the physiological, perceptual, and performance effects of wearing a phase change cooling garment (CG) during an interval exercise routine in the heat. Sixteen male participants (age 23?±?3 years, ht 1.76?±?0.11?m; wt 78.5?±?11.2?kg; body fat 15.2?±?5.8%) completed two trials (one with phase change inserts, CG, and one control without inserts) consisting of two submaximal exercise portions separated by 5-minute seated rest, and a final maximal effort performance bout. Each submaximal bout involved 30?seconds or 1?minute of muscular endurance and agility exercises and 5?minutes of treadmill jogging and step-ups. The performance bout included 30?seconds or 1?minute of muscular endurance and agility exercises, with participants completing as many repetitions as possible, followed by a 15-minute recovery (active and passive). Rectal temperature (Tre) and heart rate were not different between trials, however change in Tre from baseline was improved during 10 and 15 minutes of recovery with the CG (P?<?.05). Mean skin temperature was lower using the CG vs control throughout the trial (P?<?.05). Thermal sensation was lower when using the CG compared to control (P?<?.001). There were no differences in any outcomes of the performance exercises (P?>?.05). These findings indicate that the continuous use of a CG during an interval style workout in the heat provides improvements in thermal sensation, however, only minimal thermophysiological benefits, and no performance augmentation.  相似文献   

20.
Abstract

Triathlon is a popular outdoor endurance sport performed under a variety of environmental conditions. The aim of this study was to assess physiological variables before and after a half-ironman triathlon in the heat and to analyse their relationship with performance. Thirty-four well-trained triathletes completed a half-ironman triathlon in a mean dry temperature of 29 ± 3ºC. Before and within 1 min after the end of the race, body mass, core temperature, maximal jump height and venous blood samples were obtained. Mean race time was 315 ± 40 min, with swimming (11 ± 1%), cycling (49 ± 2%) and running (40 ± 3%) representing different amounts of the total race time. At the end of the competition, body mass changed by ?3.8 ± 1.6% and the change in body mass correlated positively with race time (= 0.64; < 0.001). Core temperature increased from 37.5 ± 0.6ºC to 38.8 ± 0.7ºC (< 0.001) and post-race core temperature correlated negatively with race time (= ?0.47; P = 0.007). Race time correlated positively with the decrease in jump height (= 0.38; = 0.043), post-race serum creatine kinase (= 0.55; = 0.001) and myoglobin concentrations (= 0.39; = 0.022). In a half-ironman triathlon in the heat, greater reductions in body mass and higher post-competition core temperatures were present in faster triathletes. In contrast, slower triathletes presented higher levels of muscle damage and decreased muscle performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号