首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The power output achieved at peak oxygen consumption (VO 2Peak) and the time this power can be maintained (i. e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the VO2 response to exercise at the cycling power that output well trained cyclists achieve their VO 2peak (i. e., Pmax). Following a progressive exercise test to determine VO 2peak, 43 well trained male cyclists (M age = 25 years, SD = 6; M mass = 75 kg, SD = 7; M VO2 peak = 64.8 ml-kg1 min?1, SD = 5.2) performed two Tmax tests 1 week apart. Values expressed for each participant are means and standard deviations of these two tests. Participants achieved a mean VO 2peak during the Tmax test after 176 s (SD = 40; M = 74% of Tmax, SD = 12) and maintained it for 66 s (SD = 39; M = 26% of Tmax, SD = 12). Additionally, they obtained mean 95% of VO 2peak after 147 s (SD = 31; M = 62% of Tmax, SD = 8) and maintained it for 95 s (SD = 38; M = 38 % of Tmax, SD = 8). These results suggest that 60–70 % of Tmax is an appropriate exercise duration for a population of well trained cyclists to attain VO 2peak during exercise at Pmax. However, due to intraparticipant variability in the temporal aspects of the VO2 response to exercise at Pmax, future research is needed to examine whether individual high-intensity interval training programs for well trained endurance athletes might best be prescribed according to an athlete's individual VO2 response to exercise at Pmax.  相似文献   

2.
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption (VO2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the VO2peak power output; and (3) a 40-km cycle time-trial. There were no differences in VO2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at VO2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l x min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l x min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.  相似文献   

3.
In this study, we assessed the performance of trained senior (n = 6) and veteran (n = 6) cyclists (mean age 28 years, s = 3 and 57 years, s = 4 respectively). Each competitor completed two cycling tests, a ramped peak aerobic test and an indoor 16.1-km time-trial. The tests were performed using a Kingcycle ergometer with the cyclists riding their own bicycle fitted with an SRM powermeter. Power output, heart rate, and gas exchange variables were recorded continuously and blood lactate concentration [HLa] was assessed 3 min after the peak ramped test and at 2.5-min intervals during the time-trial. Peak values for power output (RMP(max)), heart rate (HR(peak)), oxygen uptake (VO2(peak)), and ventilation (V(Epeak)) attained during the ramped test were higher in the senior group (P < 0.05), whereas [HLa](peak), RER(peak), V(E): VO2(peak), and economy(peak) were similar between groups (P > 0.05). Time-trial values (mean for duration of race) for power output (W(TT)), heart rate (HR(TT)), VO2 (VO(2TT)), and V(E) (V(ETT)) were higher in the seniors (P < 0.05), but [HLa](TT), RER(TT), V(ETT): VO2(TT), and economy(TT) were similar between the groups (P > 0.05). Time-trial exercise intensity, expressed as %RMP(max), %HR(peak), % VO2(peak), and % V(Epeak), was similar (P > 0.05) for seniors and veterans (W(TT): 81%, s = 2 vs. 78%, s = 8; HR(TT): 96%, s = 4 vs. 94%, s = 4; VO2(TT): 92%, s = 4 vs. 95%, s = 10; V(ETT): 89%, s = 8 vs. 85%, s = 8, respectively). Overall, seniors attained higher absolute values for power output, heart rate, VO2, and V(E) but not blood lactate concentration, respiratory exchange ratio (RER), V(E): VO2, and economy. Veterans did not accommodate age-related declines in time trial performance by maintaining higher relative exercise intensity.  相似文献   

4.
Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.  相似文献   

5.
Clear criteria for maximal oxygen consumption (VO2max) determination in youth are not available, and no studies have examined this issue in girls. Our purpose was to determine whether different peak heart rate (HRpeak) and peak respiratory exchange ratio (RERpeak) cut points affect girls' (N = 453; M age = 13.3 years, SD = .1) VO2max during a maximal treadmill test. A multivariate analysis of variance revealed VO2max (ml kg(-1) min(-1) differed significantly among HRpeak, 180-189 b min(-1) = 34 (SD = .8), 190-194 bmin(-1) = 35 (SD = .9), 195-199 b min(-1) = 38 (SD = .8), 200-204 b min(-1) = 40 ml kg1 x min(-1) (SD = .8), and > or = 205 bmin(-1) = 42 ml kg1 x min(-1) (SD = .7) but not RERpeak. In studies where evidence of a VO2 plateau was examined, peak oxygen consumption (VO2peak) did not differ between plateau and no-plateau groups. Although our results suggest the association between lower VO2peak and lower peak heart rate is a true cardiovascular limit to aerobic energy production, we cannot rule out participant effort.  相似文献   

6.
Thirty-eight female subjects (M +/ SD = 33 +/- 3.0 years) had VO2max measured on the cycle ergometer (M +/- SD = 37.3 +/- 6.4 ml.kg-1.min-1) and on the treadmill (M +/- SD = 41.3 +/- 6.6 ml.kg-1.min-1). VO2max was estimated for each subject from heart rate (HR) at submaximal workloads on the cycle ergometer using the Astrand-Rhyming nomogram (A/R) and the extrapolation method (XTP). VO2max was also estimated from three field tests: 1.5-mile run (RUN) (independent variable [IV] = time), mile walk (WALK) (IV = time, age, HR, gender, body weight), and the Queens College Step Test (ST) (IV = HR during 5-20 s recovery). Repeated measure ANOVA revealed significant mean differences between the criterion cycle ergometer VO2max versus A/R and XTP (20 and 12% overestimation). The WALK, RUN, and ST VO2max values were not significantly different from the criterion treadmill VO2max. The correlation between criterion VO2max estimated from the WALK and RUN were r = .73 (SEE = 4.57 ml,kg-1.min-1) and r = .79 (SEE = 4.13 ml.kg-1.min-1), respectively. The ST, A/R, and XTP had higher SEEs (13-13.5% of the mean) and lower r s (r = .55 to r = .66). These results suggest both the WALK and RUN tests are satisfactory predictors of VO2max in 30 to 39-year-old females.  相似文献   

7.
Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption (VO2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

8.
Oxygen uptake (VO2) during treadmill exercise is directly related to the speed and grade, as well as the participant's body weight. To determine whether body composition also affects VO2 (ml.kg-1.min-1) during exercise, we studied 14 male body builders (M weight = 99 kg, SD = 7; M height = 180 cm, SD = 8; M body fat = 8%, SD = 3; M fat free mass = 91 kg, SD = 7) and 14 weight-matched men (M weight = 99 kg, SD = 9; M height = 179 cm, SD = 5; M body fat = 24%, SD = 5; M fat free mass = 73 kg, SD = 9). Percentage of body fat, t(13) = 8.185, p < .0001, and fat free mass, t(13) = 5.723, p < .0001, were significantly different between groups. VO2 was measured by respiratory gas analysis at rest and during three different submaximal workrates while walking on the treadmill without using the handrails for support. VO2 was significantly greater for the lean, highly muscular men at rest: 5.6 +/- 1 vs. 4.0 +/- 1 ml.kg-1.min-1, F(1, 26) = 21.185, p < .001; Stage 1: 1.7 mph/10%, 18.5 +/- 2 vs. 16.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 6.002, p < .05; Stage 2: 2.5 mph/12%, 26.6 +/- 3 vs. 23.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 7.991, p < .01; and Stage 3:3.4 mph/14%, 39.3 +/- 5 vs. 33.5 +/- 5 ml.kg-1.min-1, F(1, 26) = 7.682, p < .01, body builders versus weight-matched men, respectively. However, net VO2 (i.e., exercise VO2 - rest VO2) was not significantly different between the two groups at any of the matched exercise stages. The findings from this study indicate that VO2 during weight-bearing exercise performed at the same submaximal workrate is higher for male body builders compared to that measured in weight-matched men and that which is predicted by standard equations. These observed differences in exercise VO2 appear to be due to the higher resting VO2 in highly muscular participants.  相似文献   

9.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (VO2) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine VO2max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% VO2max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% VO2max, separated by 50 s of recovery at approximately 55% VO2max. Significantly greater (P < 0.05) peak power (intermittent vs continuous: 629 +/- 199 vs 601 +/- 204 W) and average power (intermittent vs continuous: 328 +/- 39.0 vs 321 +/- 42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak VO2, total VO2 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

10.
Non-exercise equations developed from self-reported physical activity can estimate maximal oxygen uptake (VO(2)max) as well as submaximal exercise testing. The International Physical Activity Questionnaire (IPAQ) is the most widely used and validated self-report measure of physical activity. This study aimed to develop and test a VO(2)max estimation equation derived from the IPAQ-Short Form (IPAQ-S). College-aged males and females (n = 80) completed the IPAQ-S and performed a maximal exercise test. The estimation equation was created with multivariate regression in a gender-balanced subsample of participants, equally representing five levels of fitness (n = 50) and validated in the remaining participants (n = 30). The resulting equation explained 43% of the variance in measured VO(2)max (SEE = 5.45 ml·kg(-1)·min(-1)). Estimated VO(2)max for 87% of individuals fell within acceptable limits of error observed with submaximal exercise testing (20% error). The IPAQ-S can be used to successfully estimate VO(2)max as well as submaximal exercise tests. Development of other population-specific estimation equations is warranted.  相似文献   

11.
We examined the effects of pre-exercise sodium bicarbonate (NaHCO3) ingestion on the slow component of oxygen uptake (VO2) kinetics in seven professional road cyclists during intense exercise. One hour after ingesting either a placebo or NaHCO3 (0.3 g x kg body mass(-1)), each cyclist (age, 25 +/- 2 years; VO2max, 74.7 +/- 5.9 ml x kg(-1) x min(-1); mean +/- s) performed two bouts of 6 min duration at an intensity of 90% VO2max interspersed by 8 min of active recovery. Gas exchange and blood data (pH, blood lactate concentration and [HCO3-]) were collected during the tests. In both bouts, the slow component of VO2 was defined as the difference between end-exercise VO2 and the VO2 at the end of the third minute. No significant difference was found in the slow component of VO2 between conditions in the first (NaHCO3, 210 +/- 69 ml; placebo, 239 +/- 105 ml) or second trial (NaHCO3, 123 +/- 88 ml; placebo, 197 +/- 101 ml). In conclusion, pre-exercise NaHCO3 ingestion did not significantly attenuate the VO2 slow component of professional road cyclists during high-intensity exercise.  相似文献   

12.
There is little published data in relation to the effects of caffeine upon cycling performance, speed and power in trained cyclists, especially during cycling of approximately 60 s duration. To address this, eight trained cyclists performed a 1 km time-trial on an electronically braked cycle ergometer under three conditions: after ingestion of 5 mg x kg-1 caffeine, after ingestion of a placebo, or a control condition. The three time-trials were performed in a randomized order and performance time, mean speed, mean power and peak power were determined. Caffeine ingestion resulted in improved performance time (caffeine vs. placebo vs. control: 71.1 +/- 2.0 vs. 73.4 +/- 2.3 vs. 73.3 +/- 2.7 s; P = 0.02; mean +/- s). This change represented a 3.1% (95% confidence interval: 0.7-5.6) improvement compared with the placebo condition. Mean speed was also higher in the caffeine than placebo and control conditions (caffeine vs. placebo vs. control: 50.7 +/- 1.4 vs. 49.1 +/- 1.5 vs. 49.2 +/- 1.7 km x h-1; P = 0.0005). Mean power increased after caffeine ingestion (caffeine vs. placebo vs. control: 523 +/- 43 vs. 505 +/- 46 vs. 504 +/- 38 W; P = 0.007). Peak power also increased from 864 +/- 107 W (placebo) and 830 +/- 87 W (control) to 940 +/- 83 W after caffeine ingestion (P = 0.027). These results provide support for previous research that found improved performance after caffeine ingestion during short-duration high-intensity exercise. The magnitude of the improvements observed in our study could be due to our use of sport-specific ergometry, a tablet form and trained participants.  相似文献   

13.
The aim of this study was to examine the variability of the oxygen uptake (VO2) kinetic response during moderate- and high-intensity treadmill exercise within the same day (at 06:00, 12:00 and 18:00 h) and across days (on five occasions). Nine participants (age 25 +/- 8 years, mass 70.2 +/- 4.7 kg, VO2max 4137 +/- 697 ml x min(-1); mean +/- s) took part in the study. Six of the participants performed replicate 'square-wave' rest-to-exercise transitions of 6 min duration at running speeds calculated to require 80% VO2 at the ventilatory threshold (moderate-intensity exercise) and 50% of the difference between VO2 at the ventilatory threshold and VO2max (50% delta; high-intensity exercise) on 5 different days. Although the amplitudes of the VO2 response were relatively constant (coefficient of variation approximately 6%) from day to day, the time-based parameters were more variable (coefficient of variation approximately 15 to 30%). All nine participants performed replicate square-waves for each time of day. There was no diurnal effect on the time-based parameters of VO2 kinetics during either moderate- or high-intensity exercise. However, for high-intensity exercise, the amplitude of the primary component was significantly lower during the 12:00 h trial (2859 +/- 142 ml x min(-1) vs 2955 +/- 135 ml x min(-1) at 06:00 h and 2937 +/- 137 ml x min(-1) at 18:00 h; P < 0.05), but this effect was eliminated when expressed relative to body mass. The results of this study indicate that the amplitudes of the VO2 kinetic responses to moderate- and high-intensity treadmill exercise are similar within and across test days. The time-based parameters, however, are more variable from day to day and multiple transitions are, therefore, recommended to increase confidence in the data.  相似文献   

14.
目的:研究4 000 m场地自行车运动VO2反应,及前15 s高功率起动对运动成绩的影响。方法:11名男子自行车运动员在功率车上进行递增负荷试验和两种不同起动强度的4 000 m运动。首先进行前60 s平均功率(128±2)%MAP即(501.7±41.9)w强度对照模式运动;5 h后进行模拟模式运动,强度在第8~10 s达到最高值235%MAP(928.3±77.6)w,后逐步下降,15 s时至平均功率(421.9±40.1)w,维持15~60 s。60 s之后两组均进行自由速度模式,强度控制在380~420 w之间。结果:整个测试过程模拟组较对照组平均功率高19 w左右,有统计学差异。模拟组15~60 sVO2高于对照组,模拟组15s~60sVO2高于对照组,而AOD却低于对照组,对整个运动表现有促进作用。结论:4 000 m场地自行车运动前15 s高输出功率可伴随着更快的VO2反应而不是单一归于节省时间理论,并可促进中等距离自行车计时运动员的摄氧动员能力。  相似文献   

15.
In this study, we evaluated the effects of a novel pedal design, characterized by a downward and forward shift of the cleat fixing platform relative to the pedal axle, on maximal power output and mechanical efficiency in 22 well-trained cyclists. Maximal power output was measured during a series of short (5-s) intermittent sprints on an isokinetic cycle ergometer at cadences from 40 to 120 rev min(-1). Mechanical efficiency was evaluated during a submaximal incremental exercise test on a bicycle ergometer using continuous VO(2) and VCO(2) measurement. Similar tests with conventional pedals and the novel pedals, which were mounted on the individual racing bike of the participant, were randomized. Maximal power was greater with novel pedals than with conventional pedals (between 6.0%, s(x) = 1.5 at 40 rev min(-1) and 1.8%, s(x) = 0.7 at 120 rev min(-1); P = 0.01). Torque production between crank angles of 60 degrees and 150 degrees was higher with novel pedals than with conventional pedals (P = 0.004). The novel pedal design did not affect whole-body VO(2) or VCO(2). Mechanical efficiency was greater with novel pedals than with conventional pedals (27.2%, s(x) = 0.9 and 25.1%, s(x) = 0.9% respectively; P = 0.047; effect size = 0.9). In conclusion, the novel pedals can increase maximal power output and mechanical efficiency in well-trained cyclists.  相似文献   

16.
The purpose of this study was to develop a regression equation to predict maximal oxygen uptake (VO2max) based on nonexercise (N-EX) data. All participants (N = 100), ages 18-65 years, successfully completed a maximal graded exercise test (GXT) to assess VO2max (M = 39.96 mL x kg(-1) x min(-1), SD = 9.54). The N-EX data collected just before the maximal GXT included the participant's age; gender; body mass index (BMI); perceived functional ability (PFA) to walk, jog, or run given distances; and current physical activity (PA-R) level. Multiple linear regression generated the following N-EX prediction equation (R = .93, SEE = 3.45 mL x kg(-1) x min(-1), % SEE = 8.62): VO2max (mL x kg(-1) x min(-1)) = 48.0730 + (6.1779 x gender; women = 0, men = 1) - (0. 2463 x age) - (0.6186 x BMI) + (0.7115 x PFA) + (0.6709 x PA-R). Cross validation using PRESS (predicted residual sum of squares) statistics revealed minimal shrinkage (R(p) = .91 and SEE(p) = 3.63 mL x kg(-1) x min(-1)); thus, this model should yield acceptable accuracy when applied to an independent sample of adults (ages 18-65 years) with a similar cardiorespiratory fitness level. Based on standardized beta-weights, the PFA variable (0.41) was the most effective at predicting VO2max followed by age (-0.34), gender (0.33), BMI (-0.27), and PA-R (0.16). This study provides a N-EX regression model that yields relatively accurate results and is a convenient way to predict VO2max in adult men and women.  相似文献   

17.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO2max = 64 +/- 2 ml x kg(-1) x min(-1); mean +/- s(x)) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group (P < or = 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 +/- 4% and 18 +/- 4% respectively; compared with placebo, P < or = 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 +/- 30 and 115 +/- 38 s (3.8 +/- 1.7% and 4.6 +/- 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

18.
目的:研究补服不同量的乳清蛋白对人体最大吸氧量的变化,探讨补服乳清蛋白对人体有氧运动能力的影响。方法:采用单盲实验法,体育系12名健康男性大学生作为被试,每次(共3次)补服不同的补剂,然后在无氧功率自行车上进行3个连续三分钟的递增负荷运动,作自身对照。结果:补服7g和14g乳清蛋白与安慰剂相比最大吸氧量水平都有不同程度的变化,补服7g乳清蛋白与安慰剂相比差异性显著,p<0.05,补服14g乳清蛋白与安慰剂相比差异性非常显著p<0.01。结论:(1)补服不同量的乳清蛋白都不同程度影响人体的最大吸氧量水平;(2)说明乳清蛋白的补服对人体有氧运动能力有一定影响。  相似文献   

19.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO 2max = 64 - 2 ml·kg -1 ·min -1 ; mean - sx ¥ ) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group ( P h 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 - 4% and 18 - 4% respectively; compared with placebo, P h 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 - 30 and 115 - 38 s (3.8 - 1.7% and 4.6 - 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

20.
最大耗氧量速度运动时的生理负荷分析及意义   总被引:2,自引:0,他引:2  
胡国鹏  刘无逸  向剑锋 《体育科学》2005,25(8):59-61,70
目的:研究最大耗氧量速度(vVO2max)运动时运动员的生理反应,为中长跑训练处方的制订提供实验依据。方法:对12名中长跑运动员进行一次最大耗氧量(VO2max)递增负荷跑台测试和一次vVO2max力竭性跑台测试,测试受试者的VO2max、vVO2max、Tmax和tlim。结果:vVO2max持续运动中达到的VO2max和递增负荷测试达到的VO2max没有显著差异(P>0.05),且呈高度相关(R=0.857,P<0.01);vVO2max持续运动中,前60%Tmax时间内75%受试者摄氧量达到98%VO2max以上,部分受试者达到甚至超过VO2max。结论:vVO2max是一个有效诱导VO2max产生的强度,vVO2max、Tmax可以作为中长跑训练的参考指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号