首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThis study aimed to investigate if changing the midsole bending stiffness of athletic footwear can affect the onset of lower limb joint work redistribution during a prolonged run.MethodsFifteen trained male runners (10-km time of <44 min) performed 10-km runs at 90% of their individual speed at lactate threshold (i.e., when change in lactate exceeded 1 mmol/L during an incremental running test) in a control and stiff shoe condition on 2 occasions. Lower limb joint kinematics and kinetics were measured using a motion capture system and a force-instrumented treadmill. Data were acquired every 500 m.ResultsProlonged running resulted in a redistribution of positive joint work from distal to proximal joints in both shoe conditions. Compared to the beginning of the run, less positive work was performed at the ankle (approximately 9%; p ≤ 0.001) and more positive work was performed at the knee joint (approximately 17%; p ≤ 0.001) at the end of the run. When running in the stiff shoe condition, the onset of joint work redistribution at the ankle and knee joints occurred at a later point during the run.ConclusionA delayed onset of joint work redistribution in the stiff condition may result in less activated muscle volume, because ankle plantar flexor muscles have shorter muscles fascicles and smaller cross-sectional areas compared to knee extensor muscles. Less active muscle volume could be related to previously reported decreases in metabolic cost when running in stiff footwear. These results contribute to the notion that footwear with increased stiffness likely results in reductions in metabolic cost by delaying joint work redistribution from distal to proximal joints.  相似文献   

2.
ABSTRACT

The purpose of this study was to investigate the effects of slope on three-dimensional running kinematics at high speed. Thirteen male sprinters ran at high speed (7.5 m/s) on a motorised treadmill in each a level and a 5.0% slope condition. Three-dimensional motion analysis was conducted to compare centre of mass (CoM) energetics, pelvis segment and lower limb joints kinematics. We found that contact time was not affected by the slope, whereas flight time and step length were significantly shorter in uphill compared to level running. Uphill running reduced negative CoM work and increased positive CoM work compared to level running. Ankle, knee and hip joints were more flexed at initial ground contact, but only the knee was more extended at the end of stance in uphill compared to level running. Additionally, the hip joint was more abducted, and the free leg side of the pelvis was more elevated at the end of stance in uphill running. Our results demonstrate that joint motion must be developed from a more flexed/adducted position at initial contact through a greater range of motion compared to level running in order to meet the greater positive CoM work requirements in uphill running at high speed.  相似文献   

3.
Abstract

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.  相似文献   

4.
The aim of this study was to observe changes in the kinematics and muscle activities when barefoot running was initially adopted by six habitually shod, recreational rearfoot striking runners. Participants ran on a treadmill shod for 5 min, completed 3 × 10-min intervals of barefoot running and then completed a final minute of shod running at a self-selected pace. Dependent variables (speed, joint angles at foot-contact, joint range of motion (ROM), mean and peak electromyography (EMG) activity) were compared across conditions using repeated measures ANOVAs. Anterior pelvic tilt and hip flexion significantly decreased during barefoot conditions at foot contact. The ROM for the trunk, pelvis, knee and ankle angles decreased during the barefoot conditions. Mean EMG activity was reduced for biceps femoris, gastrocnemius lateralis and tibialis anterior during barefoot running. The peak activity across the running cycle decreased in biceps femoris, vastus medialis, gastrocnemius medialis and tibialis anterior during barefoot running. During barefoot running, tibialis anterior activity significantly decreased during the pre-activation and initial contact phases; gastrocnemius lateralis and medialis activity significantly decreased during the push-off phase. Barefoot running caused immediate biomechanical and neuromuscular adaptations at the hip and pelvis, which persisted when the runners donned their shoes, indicating that some learning had occurred during an initial short bout of barefoot running.  相似文献   

5.
Abstract

The barbell back squat is commonly used by athletes participating in resistance training. The barbell squat is typically performed using standard athletic shoes, or specially designed weightlifting footwear, although there are now a large number of athletes who prefer to squat barefoot or in barefoot-inspired footwear. This study aimed to determine how these footwear influence 3-D kinematics and muscle activation potentials during the barbell back squat. Fourteen experienced male participants completed squats at 70% 1 rep max in each footwear condition. 3-D kinematics from the torso, hip, knee and ankle were measured using an eight-camera motion analysis system. In addition, electromyographical (EMG) measurements were obtained from the rectus femoris, tibialis anterior, gastrocnemius, erector spinae and biceps femoris muscles. EMG parameters and joint kinematics were compared between footwear using repeated-measures analyses of variance. Participants were also asked to subjectively rate which footwear they preferred when performing their squat lifts; this was examined a chi-squared test. The kinematic analysis indicated that, in comparison to barefoot the running shoe was associated with increased squat depth, knee flexion and rectus femoris activation. The chi-squared test was significant and showed that participants preferred to squat barefoot. This study supports anecdotal evidence of athletes who prefer to train barefoot or in barefoot-inspired footwear although no biomechanical evidence was found to support this notion.  相似文献   

6.
The energy contribution of the lower extremity joints to vertical jumping and long jumping from a standing position has previously been investigated. However, the resultant joint moment contributions to vertical and long jumps performed with a running approach are unknown. metatarsophalangeal joint to these activities has not been investigated. The objective of this study was to determine the mechanical energy contributions of the hip, knee, ankle and metatarsophalangeal joints to running long jumps and running vertical jumps. A sagittal plane analysis was performed on five male university basketball players while performing running vertical jumps and four male long jumpers while performing running long jumps. The resultant joint moment and power patterns at the ankle, knee and hip were similar to those reported in the literature for standing jumps. It appears that the movement pattern of the jumps is not influenced by an increase in horizontal velocity before take-off. The metatarsophalangeal joint was a large energy absorber and generated only a minimal amount of energy at take-off. The ankle joint was the largest energy generator and absorber for both jumps; however, it played a smaller relative role during long jumping as the energy contribution of the hip increased.  相似文献   

7.
下肢鞭打应属于打击性鞭打动作,选择踢球这一典型的下肢鞭打动作作为研究对象,利用三维录像拍摄与解析技术、逆向动力学计算方法和无线遥测肌电测试与分析技术对其进行了同步研究,以期能够从运动学、动力学、肌电学3个不同的层面来揭示下肢鞭打动作的特征与机制。研究表明:1)下肢鞭打动作角速度特征为后摆时表现为大腿逐渐减速,小腿加速→最大角速度→减速的特点;前摆时表现为大腿加速→最大角速度→减速,小腿持续加速的特点。2)髋关节的屈肌力矩、膝关节的伸肌力矩、踝关节的背屈力矩在下肢鞭打动作前摆阶段起主导作用;髋关节的内收/外展力矩起定向作用;髋关节旋内/旋外力矩、膝关节旋内/旋外力矩以及踝关节内翻力矩的主要作用是对脚的方位及倾斜程度进行调整。3)股直肌、股内肌、股外肌、胫骨前肌在下肢鞭打动作前摆阶段起主导作用。4)小腿加速前摆的初期伸膝肌群产生的伸膝力矩在起支配作用,后期是伸膝力矩与来自大腿角动量的传递共同在起作用。  相似文献   

8.
目的:检测太极拳蹬腿动作支撑腿和动作腿的协调活动,揭示中枢双重命令下的下肢运动控制的特征.方法:太极拳运动员和初学者各10人,分两组.记录太极蹬腿动作时下肢肌肌电图、双下肢关节的角运动、足底中心压力的移位.每次试验8 s完成,重复5次.统计处理后,做肌电、运动和平衡分析.鲒果:两组间支撑腿的EMG、关节活动和COP位移出现了在形态上和幅度上的差别,但是在动作腿多表现在幅度上的差别.运动员支撑腿的平均EMG都高于初学者,只有股直肌有显著差异;运动员膝和髋关节的平均最大运动角度小于初学者,踝关节的平均最大运动角度稍稍比初学者大,只有髋关节的平均最大运动角度较为显著.运动员动作腿的平均EMG只有股直肌和胫骨前肌显著地高于初学者,而臀中肌显著地低于初学者;所有关节的平均最大运动角度都是运动员的显著大于初学者.平均足底中心压力的侧方和前后方位移都是运动员的显著大于初学者.运动员动作腿的起始运动约250~350ms,滞后于支撑腿起始运动的延迟时间.结论:运动员和初学者都可以用踝-髋策略来调节单腿直立的姿势平衡,但是运动员能够启动一个根据任务需要的前馈控制技术,通过下肢肌的积极活动,预先形成一个对抗蹬腿反作用力干扰的姿势稳定.因此,训练太极拳可以获得这个前馈控制技术.持续降低重心时,初学者的蹬腿和支撑两任务间出现了相互冲突.  相似文献   

9.
目的:确定运动员在落地后即刻启动完成侧切变向(LSC)动作的下肢踝、膝和髋三关节矢状面的运动学和动力学特点,并与平地跑动侧切变向(SC)对比分析、探讨这些差异对下肢关节造成的影响。方法:以14名高水平足球运动员为背景的大学生完成落地侧切和平跑侧切动作时的下肢运动学和动力学数据进行采集与分析。结果:LSC动作的踝、膝关节ROM和关节角速度显著增加,髋关节ROM则呈相反趋势(P<0.05或P<0.01);LSC的踝、膝和髋关节力矩峰值,踝、髋关节功率峰值呈现显著大于SC(P<0.01),膝关节功率峰值小于SC(P<0.05);LSC在水平向后、垂直向上地反峰值及峰值加载率有明显的增加(P<0.01),水平向右地反无明显差异(P>0.05)。结论:LSC虽然略降低了膝关节功率峰值,但其余所有运动学、动力学及GRF都预示其下肢关节所承受的损伤风险更高,尤其是踝关节和膝关节。踝关节的高功率和跖屈肌的持续紧张、伸膝力矩和三维地反的显著升高,使得该动作比公认高损伤风险的平跑侧切损伤风险几率更大。  相似文献   

10.
Abstract

The purpose of this study was to investigate changes in ankle joint stiffness and the associated changes in the gastrocnemius muscle and tendon due to static stretching. Seven healthy male participants lay supine with the hip and knee joints fully extended. The right ankle joint was rotated into dorsiflexion from a 30° plantar flexed position and the torque measured by a dynamometer. The ankle joint was maintained in a dorsiflexed position for 20 min (static stretching of the calf muscles). We performed surface electromyography of the medial and lateral gastrocnemii, the soleus, and the tibialis anterior of the right leg to confirm no muscle activity throughout static stretching and the passive test (passive dorsiflexion). During static stretching, the ankle joint angle and elongation of the gastrocnemius were recorded by goniometry and ultrasonography, respectively. Tendon elongation of the gastrocnemius was calculated based on the changes in the ankle joint angle and muscle elongation. In addition, the relationships between passive torques and ankle joint angles, and elongation of muscle and tendon, were examined before and after static stretching. The ankle dorsiflexion angle and tendon elongation increased significantly by 10 min after the onset of static stretching, while there was no further increase in muscle length. In addition, ankle dorsiflexion angle and tendon elongation at an identical passive torque (30 N · m) increased significantly (from 24±7° to 33±5° and from 17±2 mm to 22±1 mm, respectively) after static stretching. However, muscle elongation was unchanged. In conclusion, the current results suggest that an increase in the ankle joint dorsiflexion angle due to static stretching is attributable to a change in tendon not muscle stiffness.  相似文献   

11.
Abstract

The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles.  相似文献   

12.
短跑途中跑支撑阶段支撑腿关节肌肉生物力学特性的研究   总被引:5,自引:1,他引:4  
采用测力、测角加速度和多机多分辨拍摄技术对短跑途中跑支撑阶段肌肉动力学特征进行关节内力矩的计算与分析。研究表明,运动员踝关节跖屈肌的最大力矩与跑的速度呈显著相关;膝关节的伸肌在接近一半的支撑时间内是做离心收缩,离心收缩肌力矩的峰值要高于向心收缩的肌力矩峰值,离地前20%时刻膝关节屈肌起重要作用;髋关节在支撑阶段存在关节屈伸肌群交替工作,在着地后瞬间有较大的屈肌力矩,在离地前髋关节伸肌起重要作用,支撑阶段下肢关节肌肉快速退让性的离心收缩与主动收缩起同样重要的作用。  相似文献   

13.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.  相似文献   

14.
The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint moment, reduced hip joint moment and greater activity in specific muscles. Due to the influence of lower extremity inertial properties, higher pedaling frequency induces more neuromuscular changes at the hip than at the knee or ankle joints. These neuromuscular adaptations to environmental and task constraints are discussed with regard to the contributions of the central nervous system and the solution provided by peripheral anatomical structure--mono- and biarticular muscles. The results indicate that training and related movement analysis should be specific to the motion, supporting the notion of task-specific training.  相似文献   

15.
采用ME6000表面肌电仪和SONY高速摄像机对沈阳体育学院9名优秀速度滑冰运动员在模拟滑道训练中进行同步分析。结果表明:速度滑冰运动员侧蹬腿与支撑腿表面肌电原始电压有显著差异,左右伸膝肌群(腓外、腓内)在滑行过程中放电高于其他肌群;左腿为侧蹬腿时,半腱肌在膝关节折叠成小角度时放电最为明显;双支撑阶段右腿屈伸肌群表面肌电标准化电压在膝关节角为110~120°时达到最大值,在膝关节角大于120°之后肌肉力量降低明显。  相似文献   

16.
This study examined the effect of diamond deloading tape on medial gastrocnemius (MG) muscle behaviour during exercise in healthy adults (n = 27). A randomised cross-over trial assessed the effect of tape (no-tape, sham-tape and deload-tape) on ankle and MG fascicle kinematics during three heel raise-lower exercises [double leg (DL), single leg (SL) and loaded single leg (LSL)]. There was no effect of tape on standing fascicle length (FL) or pennation angle (PA), or ankle or knee joint angle. There was a significant effect of tape on ankle kinematics for all exercises. Both the deload-tape and sham-tape resulted in less ankle plantar flexion but had no effect on dorsiflexion. There was a significant effect of tape on FL change for the SL and LSL exercise. Compared to no-tape, the deload-tape resulted in less fascicle shortening during ankle plantar flexion, and more fascicle lengthening during ankle dorsiflexion. For the LSL exercise, deload-tape caused MG fascicles to operate at longer lengths, for a given joint angle. Diamond taping, with or without added tension, has only a small effect on ankle and MG fascicle kinematics during the heel raise-lower exercise. With the exception of the LSL exercise, both tape conditions resulted in similar changes in the FL-angle relations.  相似文献   

17.
We investigated the linear kinematics and the change in energy of the barbell and the angular kinematics of the trunk and leg during the snatch technique of 12 elite male Greek weightlifters under competitive conditions after the new weight classification. Two S-VHS cameras operating at 60 Hz were used to record the lifts. The spatial coordinates of selected points were calculated using the direct linear transformation procedure; after digital filtering of the raw data, the angular displacements and angular velocities were calculated for the hip, knee and ankle joints. The following variables were also calculated for the barbell: vertical and horizontal displacement, vertical linear velocity and acceleration, external mechanical work and power output. The results revealed that all weightlifters flexed their knees during the transition phase, independently of their weight category. This indicates that the athletes use the elastic energy produced during the stretch–shortening cycle to enhance their performance. In nine athletes, we found that the barbell trajectory did not cross a vertical reference line that passed through the initial position of the barbell. The vertical linear velocity of the barbell was increased continuously from the beginning of the movement until the second maximum extension of the knee joint, with no notable dip being observed. Regarding the change in energy of the barbell, we found that the mechanical work for the vertical displacement of the barbell in the first pull was significantly greater than the mechanical work in the second pull. In contrast, the estimated average mechanical power output of the athletes during the vertical displacement of the barbell was significantly greater in the second pull than in the first pull. We conclude that the major elements of the snatch technique of elite Greek weightlifters have not been aff ected by the new weight classification.  相似文献   

18.
We investigated the linear kinematics and the change in energy of the barbell and the angular kinematics of the trunk and leg during the snatch technique of 12 elite male Greek weightlifters under competitive conditions after the new weight classification. Two S-VHS cameras operating at 60 Hz were used to record the lifts. The spatial coordinates of selected points were calculated using the direct linear transformation procedure; after digital filtering of the raw data, the angular displacements and angular velocities were calculated for the hip, knee and ankle joints. The following variables were also calculated for the barbell: vertical and horizontal displacement, vertical linear velocity and acceleration, external mechanical work and power output. The results revealed that all weightlifters flexed their knees during the transition phase, independently of their weight category. This indicates that the athletes use the elastic energy produced during the stretch-shortening cycle to enhance their performance. In nine athletes, we found that the barbell trajectory did not cross a vertical reference line that passed through the initial position of the barbell. The vertical linear velocity of the barbell was increased continuously from the beginning of the movement until the second maximum extension of the knee joint, with no notable dip being observed. Regarding the change in energy of the barbell, we found that the mechanical work for the vertical displacement of the barbell in the first pull was significantly greater than the mechanical work in the second pull. In contrast, the estimated average mechanical power output of the athletes during the vertical displacement of the barbell was significantly greater in the second pull than in the first pull. We conclude that the major elements of the snatch technique of elite Greek weightlifters have not been affected by the new weight classification.  相似文献   

19.
BackgroundOne-legged pedaling is of interest to elite cyclists and clinicians. However, muscular usage in 1-legged vs. 2-legged pedaling is not fully understood. Thus, the study was aimed to examine changes in leg muscle activation patterns between 2-legged and 1-legged pedaling.MethodsFifteen healthy young recreational cyclists performed both 1-legged and 2-legged pedaling trials at about 30 Watt per leg. Surface electromyography electrodes were placed on 10 major muscles of the left leg. Linear envelope electromyography data were integrated to quantify muscle activities for each crank cycle quadrant to evaluate muscle activation changes.ResultsOverall, the prescribed constant power requirements led to reduced downstroke crank torque and extension-related muscle activities (vastus lateralis, vastus medialis, and soleus) in 1-legged pedaling. Flexion-related muscle activities (biceps femoris long head, semitendinosus, lateral gastrocnemius, medial gastrocnemius, tensor fasciae latae, and tibialis anterior) in the upstroke phase increased to compensate for the absence of contralateral leg crank torque. During the upstroke, simultaneous increases were seen in the hamstrings and uni-articular knee extensors, and in the ankle plantarflexors and dorsiflexors. At the top of the crank cycle, greater hip flexor activity stabilized the pelvis.ConclusionThe observed changes in muscle activities are due to a variety of changes in mechanical aspects of the pedaling motion when pedaling with only 1 leg, including altered crank torque patterns without the contralateral leg, reduced pelvis stability, and increased knee and ankle stiffness during the upstroke.  相似文献   

20.
Changes in muscle activity with increasing running speed   总被引:3,自引:2,他引:1  
Electromyographic (EMG) activity of the leg muscles and the ground reaction forces were recorded in 17 elite male middle-distance runners, who performed isometric maximal voluntary contractions (MVC) as well as running at different speeds. Electromyograms were recorded from the gluteus maximus, vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior. The results indicated that the averaged EMG (aEMG) activities of all the muscles studied increased (P < 0.05) with increasing running speed, especially in the pre-contact and braking phases. At higher speeds, the aEMG activities of the gastrocnemius, vastus lateralis, biceps femoris and gluteus maximus exceeded 100% MVC in these same phases. These results suggest that maximal voluntary contractions cannot be used as an indicator of the full activation potential of human skeletal muscle. Furthermore, the present results suggest that increased pre-contact EMG potentiates the functional role of stretch reflexes, which subsequently increases tendomuscular stiffness and enhances force production in the braking and/or propulsive phases in running. Furthermore, a more powerful force production in the optimal direction for increasing running speed effectively requires increased EMG activity of the two-joint muscles (biceps femoris, rectus femoris and gastrocnemius) during the entire running cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号