首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to compare the effect of low-load resistance exercise (LLRE) with continuous and intermittent blood flow restriction (BFR) on the creatine kinase (CK), lactate dehydrogenase (LDH), protein carbonyl (PC), thiobarbituric acid-reactive substance (TBARS) and uric acid (UA) levels in military men. The study included 10 recreationally trained men aged 19 ± 0.82 years who underwent the following experimental protocols in random order on separate days (72–96 h): 4 LLRE sessions at a 20% 1RM (one-repetition maximum [1RM]) with continuous BFR (LLRE + CBFR); 4 LLRE sessions at 20% 1RM with intermittent BFR (LLRE + IBFR) and 4 high-intensity resistance exercise (HIRE) sessions at 80% 1RM. The CK and LDH (markers of muscle damage) levels were measured before exercise (BE), 24 h post-exercise and 48 h post-exercise, and the PC, TBARS and UA (markers of oxidative stress) levels were measured BE and immediately after each exercise session. There was a significant increase in CK in the HIRE 24 post-exercise samples compared with the LLRE + CBFR and LLRE + IBFR (P = 0.035, P = 0.036, respectively), as well as between HIRE 48 post-exercise and LLRE + CBFR (P = 0.049). Additionally, there was a significant increase in CK in the LLRE + CBFR samples BE and immediately after each exercise (Δ = 21.9%) and in the HIRE samples BE and immediately after each exercise, BE and 24 post-exercise, and BE and 48 post-exercise (Δ values of 35%, 177.6%, and 177.6%, respectively). However, there were no significant changes in LDH, PC, TBARS, and UA between the protocols (P > 0.05). Therefore, a physical exercise session with continuous or intermittent BFR did not promote muscle damage; moreover, neither protocol seemed to affect the oxidative stress markers.  相似文献   

2.
Abstract

Thirty-six male rats were used; divided into 6 groups (n = 6): saline; creatine (Cr); eccentric exercise (EE) plus saline 24 h (saline + 24 h); eccentric exercise plus Cr 24 h (Cr + 24 h); eccentric exercise plus saline 48 h (saline + 48 h); and eccentric exercise plus Cr 48 h (Cr + 48h). Cr supplementation was administered as a solution of 300 mg · kg body weight?1 · day?1 in 1 mL water, for two weeks, before the eccentric exercise. The animals were submitted to one downhill run session at 1.0 km · h?1 until exhaustion. Twenty-four and forty-eight hours after the exercise, the animals were killed, and the quadriceps were removed. Creatine kinase levels, superoxide production, thiobarbituric acid reactive substances (TBARS) level, carbonyl content, total thiol content, superoxide dismutase, catalase, glutathione peroxidase, interleukin-1b (IL-1β), nuclear factor kappa B (NF-kb), and tumour necrosis factor (TNF) were analysed. Cr supplementation neither decreases Cr kinase, superoxide production, lipoperoxidation, carbonylation, total thiol, IL-1β, NF-kb, or TNF nor alters the enzyme activity of superoxide dismutase, catalase, and glutathione peroxides in relation to the saline group, respectively (P < 0.05). There are positive correlations between Cr kinase and TBARS and TNF-α 48 hours after eccentric exercise. The present study suggests that Cr supplementation does not decrease oxidative stress and inflammation after eccentric contraction.  相似文献   

3.
The purpose of the present study was to compare acute changes in oxidative stress and inflammation in response to steady state and low volume, high intensity interval exercise (LV-HIIE). Untrained healthy males (n = 10, mean ± s: age 22 ± 3 years; VO2MAX 42.7 ± 5.0 ml · kg?1 · min?1) undertook three exercise bouts: a bout of LV-HIIE (10 × 1 min 90% VO2MAX intervals) and two energy-matched steady-state cycling bouts at a moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensity on separate days. Markers of oxidative stress, inflammation and physiological stress were assessed before, at the end of exercise and 30 min post-exercise (post+30). At the end of all exercise bouts, significant changes in lipid hydroperoxides (LOOH) and protein carbonyls (PCs) (LOOH (nM): MOD +0.36; HIGH +3.09; LV-HIIE +5.51 and PC (nmol · mg?1 protein): MOD ?0.24; HIGH ?0.11; LV-HIIE ?0.37) were observed. Total antioxidant capacity (TAC) increased post+30, relative to the end of all exercise bouts (TAC (µM): MOD +189; HIGH +135; LV-HIIE +102). Interleukin (IL)-6 and IL-10 increased post+30 in HIGH and LV-HIIE only (P < 0.05). HIGH caused the greatest lymphocytosis, adrenaline and cardiovascular response (P < 0.05). At a reduced energy cost and physiological stress, LV-HIIE elicited similar cytokine and oxidative stress responses to HIGH.  相似文献   

4.
Abstract

Glutamine enhances the exercise-induced expansion of the tricarboxylic acid intermediate pool. The aim of the present study was to determine whether oral glutamine, alone or in combination with hyperoxia, influenced oxidative metabolism and cycle time-trial performance. Eight participants consumed either placebo or 0.125 g · kg body mass?1 of glutamine in 5 ml · kg body mass?1 placebo 1 h before exercise in normoxic (control and glutamine respectively) or hyperoxic (FiO2 = 50%; hyperoxia and hyperoxia + glutamine respectively) conditions. Participants then cycled for 6 min at 70% maximal oxygen uptake ([Vdot]O2max) immediately before completing a brief high-intensity time-trial (~4 min) during which a pre-determined volume of work was completed as fast as possible. The increment in pulmonary oxygen uptake during the performance test (Δ[Vdot]O2max, P = 0.02) and exercise performance (control: 243 s, s x  = 7; glutamine: 242 s, s x  = 3; hyperoxia: 231 s, s x  = 3; hyperoxia + glutamine: 228 s, s x  = 5; P < 0.01) were significantly improved in hyperoxic conditions. There was some evidence that glutamine ingestion increased Δ[Vdot]O2max in normoxia, but not hyperoxia (interaction drink/FiO2, P = 0.04), but there was no main effect or impact on performance. Overall, the data show no effect of glutamine ingestion either alone or in combination with hyperoxia, and thus no limiting effect of the tricarboxylic acid intermediate pool size, on oxidative metabolism and performance during maximal exercise.  相似文献   

5.
Abstract

We studied the effect of intermittent hypobaric hypoxia exposure on lactate dehydrogenase and citrate synthase activities, together with myoglobin content, of rat myocardium, tibialis anterior, and diaphragm muscles. The intermittent hypoxia exposure programme consisted of daily 4-h sessions in a hypobaric chamber (5000 m) over a period of 22 days. Samples were taken at the end of the programme, and 20 and 40 days later, and compared with those of control animals. In myocardium, lactate dehydrogenase activity was significantly depressed in animals 20 days post-exposure (314.6 ± 15.3 IU · g?1) compared with control animals (400 ± 14.3 IU · g?1), while citrate synthase activity and myoglobin concentration showed a significant stepwise increase from control animals (88.2 ± 3.6 IU · g?1 and 4.38 ± 0.13 μm · mg?1) to animals 20 days (104.7 ± 3.7 IU · g?1 and 5.01 ± 0.17 μm · mg?1) and 40 days post-exposure (108.8 ± 6.5 IU · g?1 and 5.11 ± 0.22 μm · mg?1). In contrast, no differences were found in diaphragm and tibialis anterior muscles. Our results show that intermittent hypobaric hypoxia exposure increased the oxidative character of myocardium even 20 days after the hypoxic stimulus has ceased, and that this effect lasts for more than 40 days for citrate synthase activity and myoglobin concentration. These findings support our previous results on skeletal and cardiac muscle capillarization after passive intermittent simulated altitude exposure, thus providing morphofunctional and biochemical evidence for increased cardiac aerobic efficiency.  相似文献   

6.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

7.
This study investigated the effects of aerobic exercise, fluid loss and rehydration on cognitive performance in well-trained athletes. Ten endurance-trained males (25 ± 5 years; 175 ± 5 cm; 70.35 ± 5.46 kg; VO2max, 62.95 ± 7.20 ml · kg.min?1) lost ~2.5 ± 0.6% body mass via continuous cycling exercise at ~65% peak sustainable power output (60 min duration) before consuming different beverages (Water = W1 and W2, Sustagen Sport = SS, Powerade = PD) and food ad libitum on four separate occasions. Cognitive function using a four-choice reaction time task (CRT), body mass, fluid consumption volumes, urine samples and subjective ratings (alertness, concentration, energy) were obtained before and after exercise, and hourly during recovery (for 4 h). CRT latency was significantly reduced immediately after exercise compared to pre-exercise measures for all trials (W1 = ?16 ± 18 ms, W2 = ?22 ± 21 ms, PD = ?22 ± 22 ms, SS = ?19 ± 26 ms). However, this effect was short-lived with subsequent measures not different from pre-exercise values. No difference in CRT accuracy was observed at any time across all trials. Subjective ratings were not different at any time across all trials. Aerobic exercise, hypohydration or an interaction between these two may provide a small cognitive performance benefit. However, these effects are temporary and confined to the immediate post-exercise period.  相似文献   

8.
This study compares test-retest reliability and peak exercise responses from ramp-incremented (RAMP) and maximal perceptually-regulated (PRETmax) exercise tests during arm crank exercise in individuals reliant on manual wheelchair propulsion (MWP). Ten untrained participants completed four trials over 2-weeks (two RAMP (0–40 W + 5–10 W · min?1) trials and two PRETmax. PRETmax consisted of five, 2-min stages performed at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20). Participants freely changed the power output to match the required RPE. Gas exchange variables, heart rate, power output, RPE and affect were determined throughout trials. The V?O2peak from RAMP (14.8 ± 5.5 ml · kg?1 · min?1) and PRETmax (13.9 ± 5.2 ml · kg?1 · min?1) trials were not different (P = 0.08). Measurement error was 1.7 and 2.2 ml · kg?1 · min?1 and coefficient of variation 5.9% and 8.1% for measuring V?O2peak from RAMP and PRETmax, respectively. Affect was more positive at RPE 13 (P = 0.02), 15 (P = 0.01) and 17 (P = 0.01) during PRETmax. Findings suggest that PRETmax can be used to measure V?O2peak in participants reliant on MWP and leads to a more positive affective response compared to RAMP.  相似文献   

9.
An increase in salivary leukocytes may contribute to the exercise-induced increase in salivary antimicrobial proteins (AMPs). However, exercise-induced changes in salivary leukocytes have not been studied. The purpose of the study was to describe salivary leukocyte changes with exercise. Participants (= 11, 20.3 ± 0.8 years, 57.2 ± 7.6 ml kg?1 min?1 peak oxygen uptake ((VO) ?2peak), 11.1 ± 3.9% body fat) ran for 45 min at 75% of VO2peak. Stimulated saliva (12 mL) was collected pre- and immediately post exercise. Saliva was filtered through a 30 µm filter before analysis of leukocytes (CD45+), granulocytes (CD45+CD15+), monocytes (CD45+CD14+), T-cells (CD45+CD3+), and B-cells (CD45+CD20+) using flow cytometry. Saliva was analysed for Lysozyme (Lys) using ELISA. Exercise did not alter any leukocyte subset. The major constituent of leukocytes pre-exercise were granulocytes (57.9 ± 30.3% compared with monocytes: 5.1 ± 2.7%, T-cells: 17.1 ± 8.9%, B-cells: 12.1 ± 10.2%) (P < 0.05). In a subset of = 6, Lys secretion rate increased after exercise (pre: 5,170 ± 5,215 ng/min; post: 7,639 ± 4,140 ng/min) (P < 0.05). Exercise does not result in increased granulocytes, but does increase Lys. Further, these data suggest that an increase in salivary leukocytes is not needed to increase Lys.  相似文献   

10.
Abstract

In this study, we examined the effects of a pre-acclimatization programme on endurance performance at moderate altitude using a resting intermittent hypoxia protocol. The time-trial performance of 11 cyclists was determined at low altitude (600 m). Athletes were randomly assigned in a double-blind fashion to the hypoxia or the control group. The pre-acclimatization programme consisted of seven sessions each lasting 1 h in normobaric hypoxia (inspired fraction of oxygen of 12.5%, equivalent to approximately 4500 m) for the hypoxia group (n = 6) and in normoxia (inspired fraction of oxygen of 20.9%) for the control group (n = 5). The time-trials were repeated at moderate altitude (1970 m). Mean power output during the time-trial at moderate altitude was decreased in the hypoxia group (?0.26 ± 0.11 W · kg?1) and in the control group (?0.13 ± 0.04 W · kg?1) compared with at low altitude but did not differ between groups (P = 0.13). Our results suggest that the applied protocol of intermittent hypoxia had no positive effect on endurance performance at moderate altitude. Whether different intermittent hypoxia protocols are advantageous remains to be determined.  相似文献   

11.
ABSTRACT

We analysed the time course of recovery of creatine kinase (CK) and countermovement jump (CMJ) parameters after a football match, and correlations between changes in these variables and match time–motion parameters (GPS-accelerometry) in 15 U-19 elite male players. Plasma CK and CMJ height (CMJH), average concentric force (CMJCON) and average eccentric force (CMJECC) were assessed 2 h before and 30 min, 24 h and 48 h post-match. There were substantially higher CK levels 30 min, 24 h and 48 h (ES: 0.43, 0.62, 0.40, respectively), post-match. CMJECC (ES: ?0.38), CMJH (ES: ?0.35) decreased 30 min post, CMJCON (ES: ?0.35), CMJECC (ES: ?0.35) and CMJH (ES: ?1.35) decreased 24 h post, and CMJCON (ES: ?0.41) and CMJH (ES: ?0.53) decreased 48 h post. We found correlations between distance covered at velocities ≤21 km · h?1 and changes in CK at 24 h (r = 0.56) and at 48 h (r = 0.54) and correlations between CK and distance covered >14 km · h?1 (r = 0.50), accelerations (r = 0.48), and decelerations (r = 0.58) at 48 h. Changes in CMJCON 30 min and 24 h post (both r = ?0.68) correlated with impacts >7.1·G. Decelerations >2 m · s?2 correlated with changes CMJCON (r = ?0.49) at 48 h and CMJECC (r = ?0.47) at 30 min. Our results suggest that match GPS-accelerometry parameters may predict muscle damage and changes in components of neuromuscular performance immediately and 24–48 h post-match.  相似文献   

12.
Abstract

The aim of this study was to determine if inducing metabolic alkalosis would alter neuromuscular control after 50 min of standardized submaximal cycling. Eight trained male cyclists (mean age 32 years, s = 7; [Vdot]O2max 62 ml · kg?1 · min?1, s = 8) ingested capsules containing either CaCO3 (placebo) or NaHCO3 (0.3 g · kg?1 body mass) in eight doses over 2 h on two separate occasions, commencing 3 h before exercise. Participants performed three maximal isometric voluntary contractions (MVC) of the knee extensors while determining the central activation ratio by superimposing electrical stimulation both pre-ingestion and post-exercise, followed by a 50-s sustained maximal contraction in which force, EMG amplitude, and muscle fibre conduction velocity were assessed. Plasma pH, blood base excess, and plasma HCO3 were higher (P < 0.01) during the NaHCO3 trial. After cycling, muscle fibre conduction velocity was higher (P < 0.05) during the 50-s sustained maximal contraction with NaHCO3 than with placebo (5.1 m · s?1, s = 0.4 vs. 4.2 m · s?1, s = 0.4) while the EMG amplitude remained the same. Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.  相似文献   

13.
A popular algorithm to predict VO2Peak from the one-mile run/walk test (1MRW) includes body mass index (BMI), which manifests practical issues in school settings. The purpose of this study was to develop an aerobic capacity model from 1MRW in adolescents independent of BMI. Cardiorespiratory endurance data were collected on 90 adolescents aged 13–16 years. The 1MRW was administered on an outside track and a laboratory VO2Peak test was conducted using a maximal treadmill protocol. Multiple linear regression was employed to develop the prediction model. Results yielded the following algorithm: VO2Peak = 7.34 × (1MRW speed in m s?1) + 0.23 × (age × sex) + 17.75. The New Model displayed a multiple correlation and prediction error of R = 0.81, standard error of the estimate = 4.78 ml kg?1·min?1, with measured VO2Peak and good criterion-referenced (CR) agreement into FITNESSGRAM’s Healthy Fitness Zone (Kappa = 0.62; percentage agreement = 84.4%; Φ = 0.62). The New Model was validated using k-fold cross-validation and showed homoscedastic residuals across the range of predicted scores. The omission of BMI did not compromise accuracy of the model. In conclusion, the New Model displayed good predictive accuracy and good CR agreement with measured VO2Peak in adolescents aged 13–16 years.  相似文献   

14.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

15.
Abstract

The aim of this study was to examine the effects of active versus passive recovery on blood lactate disappearance and subsequent maximal performance in competitive swimmers. Fourteen male swimmers from the University of Virginia swim team (mean age 20.3 years, s = 4.1; stature 1.85 m, s = 2.2; body mass 81.1 kg, s = 5.6) completed a lactate profiling session during which the speed at the lactate threshold (VLT), the speed at 50% of the lactate threshold (VLT.5), and the speed at 150% of the lactate threshold (VLT1.5) were determined. Participants also completed four randomly assigned experimental sessions that consisted of a 200-yard maximal-effort swim followed by 10 min of recovery (passive, VLT.5, VLT, VLT1.5) and a subsequent 200-yard maximal effort swim. All active recovery sessions resulted in greater lactate disappearance than passive recovery (P < 0.0001 for all comparisons), with the greatest lactate disappearance associated with recovery at VLT (P = 0.006 and 0.007 vs. VLT.5 and VLT1.5 respectively) [blood lactate disappearance was 2.1 mmol · l?1 (s = 2.0), 6.0 mmol · l?1 (s = 2.6), 8.5 mmol · l?1 (s = 1.8), and 6.1 mmol · l?1 (s = 2.5) for passive, VLT.5, VLT, and VLT1.5 respectively]. Active recovery at VLT and VLT1.5 resulted in faster performance on time trial 2 than passive recovery (P = 0.005 and 0.03 respectively); however, only active recovery at VLT resulted in improved performance on time trial 2 (TT2) relative to time trial 1 (TT1) [TT2?TT1: passive +1.32 s (s = 0.64), VLT.5+1.01 s (s = 0.53), VLT?1.67 s (s = 0.26), VLT1.5?0.07 s (s = 0.51); P < 0.0001 for VLT). In conclusion, active recovery at the speed associated with the lactate threshold resulted in the greatest lactate disappearance and in improved subsequent performance in all 14 swimmers. Our results suggest that coaches should consider incorporating recovery at the speed at the lactate threshold during competition and perhaps during hard training sessions.  相似文献   

16.
Abstract

The aim of the present study was to examine the relationship between intensities of exercise during match-play of elite-standard soccer referees with those of the players from the same match. Match analysis data were collected (Prozone® Leeds, UK) for 18 elite-standard soccer referees (age 26–49 years) on FA Premier League matches during the 2008/09 English FA Premier League season (236 observations). Running categories for referees and players were as follows: total distance covered (m); high-speed running distance (speed >19.8 km · h?1); and sprinting distance (speed >25.2 km · h?1). Analysis of the distance–time regression coefficients revealed no differences between the referees' and players' within-match rates of change for total distance covered (?0.594 ± 0.394 vs. ?0.713 ± 0.269 m · min?1; P = 0.104), high-speed running (?0.039 ± 0.077 vs. ?0.059 ± 0.030 m · min?1; P = 0.199), and sprinting (?0.003 ± 0.039 vs. ?0.021 ± 0.017 m · min?1; P = 0.114). In addition, there were no differences between across-season rates of change for total distance (–26.756 ± 40.434 vs. ?20.031 ± 25.502 m per match day; P = 0.439) and sprinting (–9.662 ± 7.564 vs. ?8.589 ± 4.351 m per match day; P = 0.542). These results show that elite-standard soccer referees' intensities of exercise during match-play are interrelated with those of the players and thus demonstrate that referees are able to keep pace with the players during FA Premier League matches.  相似文献   

17.
Abstract

Ghrelin is a hormone that stimulates hunger. Intense exercise has been shown to temporarily suppress hunger after exercise. In the present study, we investigated whether post-exercise hunger suppression is mediated by reduced plasma total ghrelin concentrations. Nine men and nine women participated in the study. Their mean physical characteristics were as follows: age 24.8 (s x  = 0.9) years, body mass index 22.9 (s x  = 0.6) kg · m?2, maximal oxygen uptake ([Vdot]O2max) 57.7 (s x  = 2.2) ml · kg?1 · min?1. The participants completed two 3-h trials (exercise and control) on separate days in a randomized balanced design after overnight fasts. The exercise trial involved a 1-h treadmill run at 73.5% of [Vdot]O2max followed by 2 h of rest. The control trial consisted of 3 h of rest. Blood samples were collected at 0, 0.5, 1, 1.5, 2, and 3 h. Total ghrelin concentrations were determined from plasma. Hunger was assessed following blood sampling using a 15-point scale. The data were analysed using repeated-measures analysis of variance. Hunger scores were lower in the exercise trial than in the control trial (trial, P = 0.009; time, P < 0.001; trial × time, P < 0.001). Plasma total ghrelin concentrations did not differ between trials. These findings indicate that treadmill running suppresses hunger but this effect is not mediated by changes in plasma total ghrelin concentration.  相似文献   

18.
ABSTRACT

This study assessed the intra-individual reliability of oxygen saturation in intercostal muscles (SmO2-m.intercostales) during an incremental maximal treadmill exercise by using portable NIRS devices in a test-retest study. Fifteen marathon runners (age, 24.9 ± 2.0 years; body mass index, 21.6 ± 2.3 kg·m?2; V?O2-peak, 63.7 ± 5.9 mL·kg?1·min?1) were tested on two separate days, with a 7-day interval between the two measurements. Oxygen consumption (V?O2) was assessed using the breath-by-breath method during the V?O2-test, while SmO2 was determined using a portable commercial device, based in the near-infrared spectroscopy (NIRS) principle. The minute ventilation (VE), respiratory rate (RR), and tidal volume (Vt) were also monitored during the cardiopulmonary exercise test. For the SmO2-m.intercostales, the intraclass correlation coefficient (ICC) at rest, first (VT1) and second ventilatory (VT2) thresholds, and maximal stages were 0.90, 0.84, 0.92, and 0.93, respectively; the confidence intervals ranged from ?10.8% – +9.5% to ?15.3% – +12.5%. The reliability was good at low intensity (rest and VT1) and excellent at high intensity (VT2 and max). The Spearman correlation test revealed (p ≤ 0.001) an inverse association of SmO2-m.intercostales with V?O2 (ρ = ?0.64), VE (ρ = ?0.73), RR (ρ = ?0.70), and Vt (ρ = ?0.63). The relationship with the ventilatory variables showed that increased breathing effort during exercise could be registered adequately using a NIRS portable device.  相似文献   

19.
Abstract

In this study, we examine the effect of exercise on the time and flow characteristics of the respiratory cycle profile at the point of volitional exercise termination. Eight males (mean age 29 years, s = 10; body mass 74 kg, s = 7; height 1.75 m, s = 0.04) undertook a cycle test to volitional exhaustion on a cycle ergometer, which allowed peak oxygen uptake ([Vdot]O2peak) to be measured (mean 51 ml · kg?1 · min?1, s = 7). At a later date, two sub-maximal tests to volitional exhaustion were completed in a random order at 76% (s = 6) and 86%[Vdot]O2peak (s = 7). As expected, the magnitude of the respiratory flow and time characteristics varied with the three exercise intensities, as did the point of exercise termination and terminal ventilation rates, which varied from 7 to 27 min and 112 to 132 litres · min?1 respectively. More importantly, however, at exercise termination some of the characteristics were similar, particularly the breathing frequency (at termination 49 breaths · min?1), the ratio between inspiration and total breath time (0.5), and the later occurrence of peak inspiratory flow (0.24 – 0.48 s). The coincident unity of these time and flow profile characteristics at exercise termination illustrates how the integration of timing and flow during breathing influence exercise capacity in non-elite athletes.  相似文献   

20.
Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h?1 of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s?1. Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号