首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V?O2peak) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (< 0.001), with no difference between conditions (> 0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng?mL?1, < 0.01 vs. 0.04 ± 0.18 ng?mL?1, = 0.77). Immediately following exercise, Tcore was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ºC (CON), respectively (< 0.01), with no difference between conditions (= 0.16). The rise in mean Tskin (2.88 ± 0.50 and 0.30 ± 0.89ºC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J?g?1, respectively) was higher during INT (< 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the Tcore elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine production.  相似文献   

2.
Abstract

In the present study, we assessed the effects of exercise intensity on salivary immunoglobulin A (s-IgA) and salivary lysozyme (s-Lys) and examined how these responses were associated with salivary markers of adrenal activation. Using a randomized design, 10 healthy active men participated in three experimental cycling trials: 50% maximal oxygen uptake ([Vdot]O2max), 75%[Vdot]O2max, and an incremental test to exhaustion. The durations of the trials were the same as for a preliminary incremental test to exhaustion (22.3 min, s x  = 0.8). Timed, unstimulated saliva samples were collected before exercise, immediately after exercise, and 1 h after exercise. In the incremental exhaustion trial, the secretion rates of both s-IgA and s-Lys were increased. An increase in s-Lys secretion rate was also observed at 75%[Vdot]O2max. No significant changes in saliva flow rate were observed in any trial. Cycling at 75%[Vdot]O2max and to exhaustion increased the secretion of α-amylase and chromogranin A immediately after exercise; higher cortisol values at 75%[Vdot]O2max and in the incremental exhaustion trial compared with 50%[Vdot]O2max were observed 1 h immediately after exercise only. These findings suggest that short-duration, high-intensity exercise increases the secretion rate of s-IgA and s-Lys despite no change in the saliva flow rate. These effects appear to be associated with changes in sympathetic activity and not the hypothalamic – pituitary – adrenal axis.  相似文献   

3.
Abstract

This study examined salivary cortisol and testosterone responses to two, different high-intensity, ~30-min cycles separated by 2 h rest before and after an 11-day intensified training period. Twelve recreationally active, healthy males completed the study. Saliva samples were collected before, immediately after and 30 min after both bouts with salivary cortisol and testosterone concentrations assessed. Compared with pre-training blunted exercise-induced salivary cortisol, testosterone and cortisol/testosterone responses to both bouts post-training were observed (P < 0.05 for all). Comparing pre- with post-training the absolute exercise-induced salivary cortisol, testosterone and cortisol/testosterone decreased from 11.1 to 3.1 and 7.0 to 4.4 nmol · L?1 (cortisol), from 407 to 258 and from 473 to 274 pmol · L?1 (testosterone) and from 12 to 4 and 7 to 5 (cortisol/testosterone) for the first and second bouts, respectively (P < 0.05). No differences in the pre- and post-training rating of perceived exertion (RPE) and heart rate (HR) responses during the cycles or times to fatigue were found (P > 0.05). Fatigue and Burnout scores were higher post- compared with pre-training (P < 0.05).

These high-intensity exercise bouts can detect altered hormonal responses following intensified training. This test could assess an athlete's current hormonal status, reductions in salivary cortisol and testosterone responses suggestive of increased fatigue.  相似文献   

4.
This investigation (i) examined changes in tear osmolarity in response to fluid loss that occurs with exercise in a field setting, and (ii) compared tear osmolarity with common field and laboratory hydration measures. Sixty-three participants [age 27.8 ± 8.4 years, body mass 72.15 ± 10.61 kg] completed a self-paced 10 km run outside on a predetermined course. Body mass, tear fluid, venous blood and urine samples were collected immediately before and after exercise. Significant (p < 0.001) reductions in body mass (1.71 ± 0.44%) and increases in tear osmolarity (8 ± 15 mOsm.L?1), plasma osmolality (7 ± 8 mOsm.kg?1), and urine specific gravity (0.0014 ± 0.0042 g.mL?1p = 0.008) were observed following exercise. Pre- to post-exercise change in tear osmolarity was not significantly correlated (all p > 0.05) with plasma osmolality (rs = 0.24), urine osmolality (rs = 0.14), urine specific gravity (rs = 0.13) or relative body mass loss (r = 0.20). Tear osmolarity is responsive to exercise-induced fluid loss but does not correlate with the changes observed using other common measures of hydration status in the field setting. Practitioners shouldn’t directly compare or replace other common hydration measures with tear osmolarity in the field.

Abbreviations: BML: Body Mass Loss; CV: Coefficient of Variation; Posm: Plasma osmolality; SD: Standard Deviation; Tosm: Tear Osmolarity; Uosm: Urine Osmolality; USG: Urine Specific Gravity; WBGT: Wet bulb globe thermometer  相似文献   

5.
This study examined the test-retest reliability of near-infrared spectroscopy (NIRS), laser Doppler flowmetry (LDF) and Doppler ultrasound to assess exercise-induced haemodynamics. Nine men completed two identical trials consisting of 25-min submaximal cycling at first ventilatory threshold followed by repeated 30-s bouts of high-intensity (90% of peak power) cycling in 32.8 ± 0.4°C and 32 ± 5% relative humidity (RH). NIRS (tissue oxygenation index [TOI] and total haemoglobin [tHb]) and LDF (perfusion units [PU]) signals were monitored continuously during exercise, and leg blood flow was assessed by Doppler ultrasound at baseline and after exercise. Cutaneous vascular conductance (CVC; PU/mean arterial pressure (MAP)) was expressed as the percentage change from baseline (%CVCBL). Coefficients of variation (CVs) as indicators of absolute reliability were 18.7–28.4%, 20.2–33.1%, 42.5–59.8%, 7.8–12.4% and 22.2–30.3% for PU, CVC, %CVCBL, TOI and tHb, respectively. CVs for these variables improved as exercise continued beyond 10 min. CVs for baseline and post-exercise leg blood flow were 17.8% and 10.5%, respectively. CVs for PU, tHb (r2 = 0.062) and TOI (r2 = 0.002) were not correlated (P > 0.05). Most variables demonstrated CVs lower than the expected changes (35%) induced by training or heat stress; however, minimum of 10 min exercise is recommended for more reliable measurements.  相似文献   

6.
This investigation examined the effect of beetroot juice (BR) supplementation, a source of dietary nitrate (NO3?), on cycling time-trial (TT) performance and thermoregulation in the heat. In a double-blind, repeated-measures design, 12 male cyclists (age 26.6 ± 4.4 years, VO2peak 65.8 ± 5.5 mL.kg?1.min?1) completed four cycling TTs (14 kJ.kg?1) in hot (35°C, 48% relative humidity) and euthermic (21°C, 52%) conditions, following 3 days supplementation with BR (6.5 mmol NO3? for 2 days and 13 mmol NO3? on the final day), or NO3depleted placebo (PLA). Salivary NO3? and nitrite, core (Tc) and mean skin temperature (Tsk) were measured. Salivary NO3? and nitrite increased significantly post-BR supplementation (< 0.001). Average TT completion time (mm:ss) in hot conditions was 56:50 ± 05:08 with BR, compared with 58:30 ± 04:48 with PLA (= 0.178). In euthermic conditions, average completion time was 53:09 ± 04:35 with BR, compared with 54:01 ± 04:05 with PLA (= 0.380). The TT performance decreased (< 0.001), and Tc (< 0.001) and Tsk (< 0.001) were higher in hot compared with euthermic conditions. In summary, BR supplementation has no significant effect on cycling TT performance in the heat.  相似文献   

7.
Abstract

In this study, we examined the effects of three recovery intensities on time spent at a high percentage of maximal oxygen uptake (t90[Vdot]O2max) during a short intermittent session. Eight endurance-trained male adolescents (16 ± 1 years) performed four field tests until exhaustion: a graded test to determine maximal oxygen uptake ([Vdot]O2max; 57.4 ± 6.1 ml · min?1 · kg?1) and maximal aerobic velocity (17.9 ± 0.4 km · h?1), and three intermittent exercises consisting of repeat 30-s runs at 105% of maximal aerobic velocity alternating with 30 s active recovery at 50% (IE50), 67% (IE67), and 84% (IE84) of maximal aerobic velocity. In absolute values, mean t90[Vdot]O2max was not significantly different between IE50 and IE67, but both values were significantly longer compared with IE84. When expressed in relative values (as a percentage of time to exhaustion), mean t90[Vdot]O2max was significantly higher during IE67 than during IE50. Our results show that both 50% and 67% of maximal aerobic velocity of active recovery induced extensive solicitation of the cardiorespiratory system. Our results suggest that the choice of recovery intensity depends on the exercise objective.  相似文献   

8.
Purpose: This study investigated the physiological effects of wearing a mouthguard during submaximal treadmill exercise. Method: Twenty-four recreationally active males (Mage = 21.3 ± 2.4 years, Mheight = 1.78 ± 0.06 m, Mweight = 81.9 ± 10.6 kg, Mbody mass index = 25.8 ± 3.4 kg·m?2) performed incremental, continuous exercise at 2, 4, 6, and 8 mph (3.2, 6.4, 9.7, 12.9 kph) for 5 min at each speed on a motor-driven treadmill on 2 separate occasions in a randomized, crossover, counterbalanced design while wearing or not wearing a self-adaptable “boil and bite” mouthguard. Respiratory rate (RR), tidal volume (VT), ventilation (VE), oxygen consumption (VO2), respiratory exchange ratio (RER), and heart rate (HR) data were averaged during the last 60 s of each exercise stage; blood lactate (LA) was measured before exercise and 3 min and 10 min following exercise. Results: Repeated-measures analysis of variance revealed that mouthguard use failed to alter the response of RR, VT, VE, VO2, RER, and HR to treadmill exercise (p > .05), although each variable did increase in magnitude as a result of increasing treadmill speed (p < .001). Although increasing to above resting values at both 3 min and 10 min (p < .001) after cessation of exercise, LA levels also displayed no differences with mouthguard use (p > .05). Conclusion: Despite predictable increases in respiratory, metabolic, and cardiovascular variables in response to incremental exercise, the presence of a mouthguard failed to affect the magnitude or nature of these physiological responses.  相似文献   

9.
Purpose: Correlations between fatigue-induced changes in exercise performance and maximal rate of heart rate (HR) increase (rHRI) may be affected by exercise intensity during assessment. This study evaluated the sensitivity of rHRI for tracking performance when assessed at varying exercise intensities. Method: Performance (time to complete a 5-km treadmill time-trial [5TTT]) and rHRI were assessed in 15 male runners following 1 week of light training, 2 weeks of heavy training (HT), and a 10-day taper (T). Maximal rate of HR increase (measured in bpm·s?1) was the first derivative maximum of a sigmoidal curve fit to HR data recorded during 5 min of running at 8 km·h?1 (rHRI8km·h?1), and during subsequent transition to 13 km·h?1 (rHRI8–13km·h?1) for a further 5 min. Results: Time to complete a 5-km treadmill time-trial was likely slower following HT (effect size ± 90% confidence interval = 0.16 ± 0.06), and almost certainly faster following T (–0.34 ± 0.08). Maximal rate of HR increase during 5 min of running at 8 km·h?1 and rHRI8–13km·h?1 were unchanged following HT and likely increased following T (0.77 ± 0.45 and 0.66 ± 0.62, respectively). A moderate within-individual correlation was found between 5TTT and rHRI8km·h?1 (r value ± 90% confidence interval = –.35 ± .32). However, in a subgroup of athletes (= 7) who were almost certainly slower to complete the 5TTT (4.22 ± 0.88), larger correlations were found between the 5TTT and rHRI8km·h?1 (r = –.84 ± .22) and rHRI8–13km·h?1 (r = –.52 ± .41). Steady-state HR during rHRI assessment in this group was very likely greater than in the faster subgroup (≥ 1.34 ± 0.86). Conclusion(s): The 5TTT performance was tracked by both rHRI8km·h?1 and rHRI8–13km·h?1. Correlations between rHRI and performance were stronger in a subgroup of athletes who exhibited a slower 5TTT. Individualized workloads during rHRI assessment may be required to account for varying levels of physical conditioning.  相似文献   

10.
This study examined whether avoiding or experiencing exercise-induced muscle damage (EIMD) influences strength gain after downhill walking training. Healthy young males performed treadmill downhill walking (gradient: ?28%, velocity: 5 km · h?1 and load: 10% of body mass) 1 session per week for four weeks using either a ramp-up protocol (n = 16), where exercise duration was gradually increased from 10 to 30, 50 and 70 min over four sessions, or a constant protocol (n = 14), where exercise duration was 40 min for all four sessions. Indirect markers of EIMD were measured throughout the training period. Maximal knee extension torque in eccentric (?1.05 rad·s?1), isometric and concentric (1.05 rad·s?1) conditions were measured at pre- and post-training. The ramp-up group showed no indications of EIMD throughout the training period (e.g., plasma creatine kinase (CK) activity: always <185 U · L?1) while EIMD was evident after the first session in the constant group (CK: peak 485 U · L?1). Both groups significantly increased maximal knee extension torque in all conditions with greater gains in eccentric (ramp-up: +19%, constant: +21%) than isometric (+16%, +15%) and concentric (+12%, +10%) strength without any significant group-difference. The current results suggest that EIMD can be avoided by the ramp-up protocol and is not a major determinant of training-induced strength gain.  相似文献   

11.
Abstract

The aim of present study was to examine the relationships between serum and salivary values of free testosterone, dehydroepiandrosterone, and cortisol before and after a session of resistance exercise. Twenty-eight healthy men (mean age 40 years, s = 4) participated in the present study. Serum and salivary samples were collected at rest and after a multiple-sets resistance exercise protocol, of approximately 25 minutes duration. Concentrations of free testosterone, dehydroepiandrosterone, and cortisol were measured using radioimmunoassay kits. No significant correlation was observed between serum free testosterone and salivary testosterone (r = 0.22 to 0.26, P > 0.05). Serum cortisol was significantly correlated with salivary cortisol before (r = 0.52, P = 0.005) and after (r = 0.62, P = 0.001) the exercise protocol. Serum and salivary concentrations of dehydroepiandrosterone were significantly correlated before (r = 0.68, P < 0.001) and after (r = 0.7, P < 0.001) exercise. The results of the present study suggest that even under exercise conditions, the salivary values of cortisol and dehydroepiandrosterone can reflect the behaviour of these hormones in blood. However, further studies are necessary to verify if salivary testosterone reflects the behaviour of serum free testosterone during resistance exercise.  相似文献   

12.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

13.
Abstract

In this study, we examined fat oxidation rates during exercise in obese pubescent boys. Three groups of pubescent boys (16 pre-pubescent, Tanner's stage I; 16 pubescent, Tanner's stage III; and 14 post-pubescent, Tanner's stage V) performed a graded test on a leg cycle ergometer. The first step of the test was fixed at 30 W and power was gradually increased by 20 W every 3.5 min. Oxygen consumption ([Vdot]O2) and carbon dioxide production ([Vdot]CO2) were determined as the means of measurements during the last 30 s of each step, which allowed us to calculate fat oxidation rates versus exercise intensity. Between 20 and 50% of peak oxygen consumption ([Vdot]O2peak), fat oxidation rate in relative values (mg · min?1 · kg FFM?1) decreased continuously with pubertal development. In the same way, the maximum rate of fat oxidation occurred at a lower percentage of [Vdot]O2peak (pre-pubescent: 49.47 ± 1.62%; pubescent: 47.43 ± 1.26%; post-pubescent: 45.00 ± 0.97%). Our results confirm that puberty is responsible for a decrease in fat free mass capacities to use fat during exercise. The results suggest that post-pubescent obese boys need to practise physical activity at a lower intensity than pre-pubescent boys to enhance lipolysis and diminish adipose tissue and the consequences of obesity.  相似文献   

14.
Abstract

This study examined the relationship between intensity of training and changes in hydration status, core temperature, sweat rate and composition and fluid balance in professional football players training in the heat. Thirteen professional football players completed three training sessions; “higher-intensity” (140 min; HI140), “lower-intensity” (120 min; LI120) and “game-simulation” (100 min; GS100). Movement demands were measured by Global Positioning System, sweat rate and concentration were determined from dermal patches and body mass change. Despite similar environmental conditions (26.9 ± 0.1°C and 65.0 ± 7.0% relative humidity [Rh]), higher relative speeds (m · min?1) and increased perceptions of effort and thermal strain were observed in HI140 and GS100 compared with LI120 (P < 0.05). Significantly (P < 0.05) greater sweat rate (L · h?1) and electrolyte losses (g) were observed in HI140 and GS100 compared with LI120. Rate of rise in core temperature was correlated with mean speed (r = 0.85), session rating of perceived exertion (sRPE) (r = 0.61), loss of potassium (K+) (r = 0.51) sweat rate (r = 0.49), and total sweat loss (r = 0.53), with mean speed the strongest predictor. Sodium (Na+) (r = 0.39) and K+ (r = 0.50) losses were associated with total distance covered. In hot conditions, individualised rehydration practices should be adopted following football training to account for differences in sweat rate and electrolyte losses in response to intensity and overall activity within a session.  相似文献   

15.
Abstract

The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners ([Vdot]O2peak 60.1 ± 7.3 ml · kg?1 · min?1) performed 10 min of treadmill running at 70%[Vdot]O2peak before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 ± 0.6 cm; isometric strength, ?5.6% ± 3.4%; countermovement jump height ?5.5% ± 3.4%; all P < 0.05). The results suggest that prolonged SS does not influence running economy despite changes in neuromuscular function.  相似文献   

16.
Carbohydrate (CHO) availability during endurance exercise seems to attenuate exercise-induced perturbations of cellular homeostasis and might consequently diminish the stimulus for training adaptation. Therefore, a negative effect of CHO intake on endurance training efficacy seems plausible. This study aimed to test the influence of carbohydrate intake on the efficacy of an endurance training program on previously untrained healthy adults. A randomized cross-over trial (8-week wash-out period) was conducted in 23 men and women with two 8-week training periods (with vs. without intake of 50g glucose before each training bout). Training intervention consisted of 4x45 min running/walking sessions/week at 70% of heart rate reserve. Exhaustive, ramp-shaped exercise tests with gas exchange measurements were conducted before and after each training period. Outcome measures were maximum oxygen uptake (VO2max) and ventilatory anaerobic threshold (VT). VO2max and VT increased after training regardless of CHO intake (VO2max: Non-CHO 2.6 ± 3.0 ml*min?1*kg?1 p = 0.004; CHO 1.4 ± 2.5 ml*min?1*kg?1 p = 0.049; VT: Non-CHO 4.2 ± 4.2 ml*min?1*kg?1 p < 0.001; CHO 3.0 ± 4.2 ml*min?1*kg?1 p = 0.003). The 95% confidence interval (CI) for the difference between conditions was between +0.1 and +2.1 ml*min?1*kg?1 for VO2max and between ?1.2 and +3.1 for VT. It is concluded that carbohydrate intake could potentially impair the efficacy of an endurance training program.  相似文献   

17.
Abstract

Glutamine enhances the exercise-induced expansion of the tricarboxylic acid intermediate pool. The aim of the present study was to determine whether oral glutamine, alone or in combination with hyperoxia, influenced oxidative metabolism and cycle time-trial performance. Eight participants consumed either placebo or 0.125 g · kg body mass?1 of glutamine in 5 ml · kg body mass?1 placebo 1 h before exercise in normoxic (control and glutamine respectively) or hyperoxic (FiO2 = 50%; hyperoxia and hyperoxia + glutamine respectively) conditions. Participants then cycled for 6 min at 70% maximal oxygen uptake ([Vdot]O2max) immediately before completing a brief high-intensity time-trial (~4 min) during which a pre-determined volume of work was completed as fast as possible. The increment in pulmonary oxygen uptake during the performance test (Δ[Vdot]O2max, P = 0.02) and exercise performance (control: 243 s, s x  = 7; glutamine: 242 s, s x  = 3; hyperoxia: 231 s, s x  = 3; hyperoxia + glutamine: 228 s, s x  = 5; P < 0.01) were significantly improved in hyperoxic conditions. There was some evidence that glutamine ingestion increased Δ[Vdot]O2max in normoxia, but not hyperoxia (interaction drink/FiO2, P = 0.04), but there was no main effect or impact on performance. Overall, the data show no effect of glutamine ingestion either alone or in combination with hyperoxia, and thus no limiting effect of the tricarboxylic acid intermediate pool size, on oxidative metabolism and performance during maximal exercise.  相似文献   

18.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

19.
We studied the effect of psyching-up on one-repetition maximum (1-RM) performance and salivary cortisol responses during the squat exercise. Ten men (age 21.6?±?1.4 years; mean?±?s) and ten women (age 22.4?±?2.8 years) with weight training experience of 4.5?±?2.0 years participated in this study. One-repetition maximum squats were performed on a Smith machine during each of two different intervention conditions that were counterbalanced and consisted of a free choice psych-up and a cognitive distraction. Saliva samples were obtained at the beginning of each test session and immediately after the final 1-RM attempt. No significant difference in 1-RM was identified between psyching-up (104?±?50?kg) and cognitive distraction (106?±?52?kg). Performing a 1-RM in the squat exercise significantly increased salivary cortisol concentrations during both conditions (P <?0.05). There was no significant difference in salivary cortisol responses between conditions. These results suggest that psyching-up does not increase 1-RM performance during the squat exercise in strength-trained individuals.  相似文献   

20.
Abstract

The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6×3 min at 90% [Vdot]O2max interspersed with 6×3 min active recovery at 50% [Vdot]O2max with a 7-min warm-up and cool down at 70% [Vdot]O2max) or 50 min moderate-intensity continuous running at 70% [Vdot]O2max. Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average [Vdot]O2 (71 ± 6 vs. 73 ± 4%[Vdot]O2max), total [Vdot]O2 (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号