首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effect of altering the rest period on adaptations to high-repetition resistance training is not well known. Eighteen active females were matched according to leg strength and repeated-sprint ability and randomly allocated to one of two groups. One group performed resistance training with 20-s rest intervals between sets, while the other group employed 80-s rest intervals between sets. Both groups performed the same total training volume and load. Each group trained 3 days a week for 5 weeks [15- to 20-repetition maximum (RM), 2 – 5 sets]. Repeated-sprint ability (5×6-s maximal cycle sprints), 3-RM leg press strength, and anthropometry were determined before and after each training programme. There was a greater improvement in repeated-sprint ability after training with 20-s rest intervals (12.5%) than after training with 80-s rest intervals (5.4%) (P = 0.030). In contrast, there were greater improvements in strength after training with 80-s rest intervals (45.9%) than after training with 20-s rest intervals (19.6%) (P = 0.010). There were no changes in anthropometry for either group following training. These results suggest that when training volume and load are matched, despite a smaller increase in strength, 5 weeks of training with short rest periods results in greater improvements in repeated-sprint ability than the same training with long rest periods.  相似文献   

2.
PurposeThe study aimed to investigate the role of training load characteristics and injury and illness risk in youth ski racing.MethodsThe training load characteristics as well as traumatic injuries, overuse injuries, and illnesses of 91 elite youth ski racers (age = 12.1 ± 1.3 years, mean ± SD) were prospectively recorded over a period of 1 season by using a sport-specific online database. Multiple linear regression analyses were performed to monitor the influence of training load on injuries and illnesses. Differences in mean training load characteristics between preseason, in-season, and post-season were calculated using multivariate analyses of variance.ResultsDifferences were discovered in the number of weekly training sessions (p = 0.005) between pre-season (4.97 ± 1.57) and post-season (3.24 ± 0.71), in the mean training volume (p = 0.022) between in-season (865.8 ± 197.8 min) and post-season (497.0 ± 225.5 min) and in the mean weekly training intensity (Index) (p = 0.012) between in-season (11.7 ± 1.8) and post-season (8.9 ± 1.7). A total of 185 medical problems were reported (41 traumatic injuries, 12 overuse injuries, and 132 illnesses). The weekly training volume and training intensity was not a significant risk factor for injuries (p > 0.05). Training intensity was found to be a significant risk factor for illnesses in the same week (β = 0.348; p = 0.044; R² = 0.121) and training volume represents a risk factor for illnesses in the following week (β = 0.397; p = 0.027; R² = 0.157).ConclusionA higher training intensity and volume were associated with increased illnesses, but not with a higher risk of injury. Monitoring training and ensuring appropriate progression of training load between weeks may decrease incidents of illness in-season.  相似文献   

3.
4.
PurposeThe aim of this study was to investigate the potential of dynamic resistance exercise to generate skeletal muscle-derived follistatin like-1 (FSTL1), which may induce cardioprotection in rats following myocardial infarction (MI) by inducing angiogenesis.MethodsMale, adult Sprague-Dawley rats were randomly divided into 5 groups (n = 12 in each group): sham group (S), sedentary MI group (MI), MI + resistance exercise group (MR), MI + adeno-associated virus (AAV)–FSTL1 injection group (MA), and MI + AAV–FSTL1 injection + resistance exercise group (MAR). The AAV–FSTL1 vector was prepared by molecular biology methods and injected into the anterior tibialis muscle. The MI model was established by ligation of the left anterior descending coronary artery. Rats in the MR and MAR groups underwent 4 weeks of dynamic resistance exercise training using a weighted climbing-up ladder. Heart function was evaluated by hemodynamic measures. Collagen volume fraction of myocardium was observed and analyzed by Masson''s staining. Human umbilical vein vessel endothelial cells culture and recombinant human FSTL1 protein or transforming growth factor-β receptor 1 (TGFβR1) inhibitor treatment were used to elucidate the molecular signaling mechanism of FSTL1. Angiogenesis, cell proliferation, and disco interacting protein 2 homolog A (DIP2A) location were observed by immunofluorescence staining. The expression of FSTL1, DIP2A, and the activation of signaling pathways were detected by Western blotting. Angiogenesis of endothelial cells was observed by tubule experiment. One-way analysis of variance and Student''s t test were used for statistical analysis.ResultsResistance exercise stimulated the secretion of skeletal muscle FSTL1, which promoted myocardial angiogenesis, inhibited pathological remodeling, and protected cardiac function in MI rats. Exercise facilitated skeletal muscle FSTL1 to play a role in protecting the heart. Exogenous FSTL1 promoted the human umbilical vein vessel endothelial cells proliferation and up-regulated the expression of DIP2A, while TGFβR1 inhibitor intervention down-regulated the phosphorylation level of Smad2/3 and the expression of vascular endothelial growth factor-A, which was not conducive to angiogenesis. FSTL1 bound to the receptor, DIP2A, to regulate angiogenesis mainly through the Smad2/3 signaling pathway. FSTL1–DIP2A directly activated Smad2/3 and was not affected by TGFβR1.ConclusionDynamic resistance exercise stimulates the expression of skeletal muscle-derived FSTL1, which could supplement the insufficiency of cardiac FSTL1 and promote cardiac rehabilitation through the DIP2A–Smad2/3 signaling pathway in MI rats.  相似文献   

5.
PurposeThis study was aimed to analyze the associations of objectively measured physical activity (PA), sedentary time, and physical fitness with mental health in the early second trimester (16 ± 2 gestational weeks) of pregnancy.MethodsFrom 229 women initially contacted, 124 pregnant women participated in the present cross-sectional study. Data were collected between November 2015 and March 2017. The participants wore Actigraph GT3X+ Triaxial accelerometers for 9 consecutive days to objectively measure their PA levels and sedentary time. A performance-based test battery was used to measure physical fitness. Self-report questionnaires assessed psychological ill-being (i.e., negative affect, anxiety, and depression), and psychological well-being (i.e., emotional intelligence, resilience, and positive affect). Linear regression analyses were adjusted for age, educational level, accelerometer wear time, miscarriages, and low back pain.ResultsModerate-to-vigorous PA was negatively associated with depression (β = –0.222, adjusted R2 = 0.050, p = 0.041). Higher levels of sedentary time were negatively associated with positive affect (β = –0.260, adjusted R2 = 0.085, p = 0.017). Greater upper-body flexibility was positively associated with better emotional regulation (β = 0.195, adjusted R2= 0.030, p = 0.047). The remaining associations were not significant (all p > 0.05).ConclusionAn active lifestyle characterized by higher levels of moderate-to-vigorous PA and lower levels of sedentary time during pregnancy might modestly improve the mental health of pregnant women. Although previous research has focused on the benefits of cardiorespiratory exercise, the present study shows that only upper-body flexibility is related to emotional regulation in early pregnant women. If the present findings are corroborated in further experimental research, physical exercise programs should focus on enhancing flexibility to promote improvements in emotional regulation during early second-trimester of pregnancy.  相似文献   

6.
PurposeThis study was aimed to analyze the mediation role of cardiorespiratory fitness (CRF) on the association between fatness and cardiometabolic risk scores (CMRs) in European adolescents.MethodsA cross-sectional study was conducted in adolescents (n = 525; 46% boys; 14.1 ± 1.1 years old, mean ± SD) from 10 European cities involved in the Healthy Lifestyle in Europe by Nutrition in Adolescence study. CRF was measured by means of the shuttle run test, while fatness measures included body mass index (BMI), waist to height ratio, and fat mass index estimated from skinfold thicknesses. A clustered CMRs was computed by summing the standardized values of homeostasis model assessment, systolic blood pressure, triglycerides, total cholesterol/high-density lipoprotein cholesterol ratio, and leptin.ResultsLinear regression models indicated that CRF acted as an important and partial mediator in the association between fatness and CMRs in 12–17-year-old adolescents (for BMI: coefficients of the indirect role β = 0.058 (95% confidence interval (95%CI): 0.023–0.101), Sobel test z = 3.11 (10.0% mediation); for waist to height ratio: β = 4.279 (95%CI: 2.242–7.059), z =3.86 (11.5% mediation); and for fat mass index: β = 0.060 (95%CI: 0.020–0.106), z = 2.85 (9.4% mediation); all p < 0.01).ConclusionIn adolescents, the association between fatness and CMRs could be partially decreased with improvements to fitness levels; therefore, CRF contribution both in the clinical field and public health could be important to consider and promote in adolescents independently of their fatness levels.  相似文献   

7.
ABSTRACT

Purpose: The purpose of this study was to identify whether post-resistance exercise (REx) blood flow restriction (BFR) can elicit a similar acute training stimulus to that offered by either heavy REx or traditional low-load BFR REx. Method: Ten men completed trials with 30% one-repetition maximum (1RM) for 5 sets of 15 repetitions without BFR (30%), with BFR during exercise (30% RD), and with postexercise BFR (30% RP) and at 75% 1RM for 3 sets of 10 repetitions. Lactate and cortisol were measured before and up to 60 min after exercise. Thigh circumference, ratings of perceived exertion (RPE), and pain were measured before and after exercise. Surface electromyography was measured during exercise. Results: All conditions had a large effect (effect size [ES] > 0.8) on lactate, with the largest effects observed with the 75% condition; no differences were observed between the 30% conditions. All conditions had a moderate effect (ES > 0.25 ≤ 0.4) on increasing thigh circumference. This effect was maintained (ES = 0.35) with the application of BFR after REx (30% RP). Change in RPE, from the first to last set, was significantly greater with 30% RD compared with other conditions (all p < .05). Electromyography amplitude was higher and percentage change was greater for the 75% condition compared with the other conditions (both p < .05). Conclusions: The application of BFR immediately post-REx altered several of the responses associated with REx that is aimed at inducing muscular hypertrophy. Additionally, these changes occurred with less pain and perceived exertion suggesting that this form of REx may offer an alternative, tolerable method of REx.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) and its splice variants Insulin-like growth factor-I isoform Ea (IGF-IEa) and mechano growth factor (MGF) may play an important role in muscular adaptations to resistance training (RT) that may be modulated by ageing. It has been suggested that IGF-I induces cellular responses via AKT8 virus oncogene cellular homolog (Akt) and Extracellular signal-regulated kinase (Erk) signalling pathways. Therefore, resistance exercise-induced changes in skeletal muscle IGF-IEa and MGF messenger ribonucleic acid (mRNA), and MGF, Erk1/2, Akt and p70S6K protein expression were investigated before and after 21 weeks of RT in younger (YM, 20–34 yrs., n?=?7) and older men (OM, 51–71 yrs., n?=?10). Experimental resistance exercises (RE) of 5?×?10 repetition maximum leg presses were performed pre- and post-RT. Muscle biopsies were obtained before and 48?h after REs, to study the late response to muscle loading. The muscle proteins or mRNAs of interest were not systematically influenced by the REs or RT, except for MGF mRNA expression which was increased (p?相似文献   

9.
PurposeThis systematic review aimed to describe objective sleep parameters for athletes under different conditions and address potential sleep issues in this specific population.MethodsPubMed and Scopus were searched from inception to April 2019. Included studies measured sleep only via objective evaluation tools such as polysomnography or actigraphy. The modified version of the Newcastle–Ottawa Scale was used for the quality assessment of the studies.ResultsEighty-one studies were included, of which 56 were classified as medium quality, 5 studies as low quality, and 20 studies as high quality. A total of 1830 athletes were monitored over 18,958 nights. Average values for sleep-related parameters were calculated for all athletes according to sex, age, athletic expertise level, training season, and type of sport. Athletes slept on average 7.2 ± 1.1 h/night (mean ± SD), with 86.3% ± 6.8% sleep efficiency (SE). In all datasets, the athletes’ mean total sleep time was <8 h. SE was low for young athletes (80.3% ± 8.8%). Reduced SE was attributed to high wake after sleep onset rather than sleep onset latency. During heavy training periods, sleep duration and SE were on average 36 min and 0.8% less compared to pre-season and 42 min and 3.0% less compared to in-season training periods, respectively.ConclusionAthletes’ sleep duration was found to be short with low SE, in comparison to the general consensus for non-athlete healthy adults. Notable sleep issues were revealed in young athletes. Sleep quality and architecture tend to change across different training periods.  相似文献   

10.
Abstract

This study aimed to analyse whether increasing the eccentric overload (EO) during resistance training, in terms of range of motion and/or velocity using an electric-motor device, would induce different muscle adaptations than conventional flywheel-EO resistance training. Forty physically active university students (21.7?±?3.4 years) were randomly placed into one of the three training groups (EX1, EX2, FW) and a control group without training (n?=?10 per group). Participants in the training groups completed 12 sessions (4 sets of 7 repetitions) of iso-inertial single-leg squat training over 6 weeks for the dominant leg. Resistance was generated either by an electric-motor device at two different velocities for the eccentric phase; 100% (EX1) or 150% (EX2) of concentric speed, or by a conventional flywheel device (FW). Thigh lean tissue mass, unilateral leg press one-repetition maximum (1-RM), unilateral muscle power at different percentages of the 1-RM and bilateral/unilateral vertical jump were assessed before and after the 6-week training. There were significant (p?<?0.05–0.001) main effects of time in the 3 training groups, indicating increased thigh lean tissue mass (2.5–5.8%), 1-RM load (22.4–30.2%), vertical jump performance (9.1–32.9%) and muscle power (8.8–21.7%), without differences across experimental groups. Participants in the control group did not improve any of the variables measured. In addition, EX2 showed greater gains in eccentric average peak power during training than EX1 and FW (p?<?0.001). Despite the different EO offered, 6 weeks of resistance training using flywheel or electric-motor devices induced similar significant gains in muscle mass, strength, muscle power and vertical jump.  相似文献   

11.
BackgroundConsidering the potential cumulative effects of repetitive head impact (HI) exposure, we need sensitive biomarkers to track short- and long-term effects. Circulating small extracellular vesicles (sEVs) (<200 nm) traffic biological molecules throughout the body and may have diagnostic value as biomarkers for disease. The purpose of this study was to identify the microRNA (miRNA) profile in circulating sEVs derived from human plasma following repetitive HI exposure.MethodsHealthy adult (aged 18–35 years) soccer players were randomly assigned to one of 3 groups: the HI group performed 10 standing headers, the leg impact group performed 10 soccer ball trapping maneuvers over 10 min, and the control group did not participate in any soccer drills. Plasma was collected before testing and 24 h afterward, and sEVs were isolated and characterized via nanoparticle tracking analysis. Next-generation sequencing was utilized to identify candidate miRNAs isolated from sEVs, and candidate microRNAs were analyzed via quantitative polymerase chain reaction. In silico target prediction was performed using TargetScan (Version 7.0; targetscan.org) and miRWalk (http://mirwalk.umm.uni-heidelberg.de/) programs, and target validation was performed using luciferase reporter vectors with a miR-7844-5p mimic in human embryonic kidney (HEK) 293T/17 cells.ResultsPlasma sEV concentration and size were not affected across time and group following repetitive HI exposure. After 24 h, the HI read count from next-generation sequencing showed a 4-fold or greater increase in miR-92b-5p, miR-423-5p, and miR-24-3p and a 3-fold or greater decrease in miR-7844-5p, miR-144-5p, miR-221-5p, and miR-22-3p. Analysis of quantitative polymerase chain reaction revealed that leg impact did not alter the candidate miRNA levels. To our knowledge, miR-7844-5p is a previously unknown miRNA. We identified 8 miR-7844-5p mRNA targets: protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B), LIM and senescent cell antigen-like domains 1 (LIMS1), autophagy-related 12 (ATG12), microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), integrin subunit alpha-1 (ITGA1), mitogen-activated protein kinase 1 (MAPK1), glycogen synthase kinase 3β (GSK3β), and mitogen-activated protein kinase 8 (MAPK8).ConclusionCollectively, these data indicate repetitive HI exposure alters plasma sEV miRNA content, but not sEV size or number. Furthermore, for the first time we demonstrate that previously unknown miR-7844-5p targets mRNAs known to be involved in mitochondrial apoptosis, autophagy regulation, mood disorders, and neurodegenerative disease.  相似文献   

12.
BackgroundHigh-intensity interval training (HIIT) induces similar or even superior adaptations compared to continuous endurance training. Indeed, just 6 HIIT sessions over 2 weeks significantly improves maximal oxygen uptake (VO2max), submaximal exercise fat oxidation, and endurance performance. Whether even faster adaptations can be achieved with HIIT is not known. Thus, we aimed to determine whether 2 sessions of HIIT per day, separated by 3 h, every other day for 5 days (double HIIT (HIIT-D), n = 15) could increase VO2max, submaximal exercise fat oxidation, and endurance capacity as effectively as 6 sessions of HIIT over 2 weeks (single HIIT (HIIT-S), n = 13).MethodsEach training session consisted of 10 × 60 s of cycling at 100% of VO2max interspersed with 75 s of low-intensity cycling at 60 watt (W). Pre- and post-training assessments included VO2max, time to exhaustion at ∼80% of VO2max, and 60-min cycling trials at ∼67% of VO2max.ResultsSimilar increases (p < 0.05) in VO2max (HIIT-D: 7.7% vs. HIIT-S: 6.0%, p > 0.05) and endurance capacity (HIIT-D: 80.1% vs. HIIT-S: 79.2%, p > 0.05) were observed. Submaximal exercise carbohydrate oxidation was reduced in the 2 groups after exercise training (HIIT-D: 9.2%, p = 0.014 vs. HIIT-S: 18.8%, p = 0.012) while submaximal exercise fat oxidation was significantly increased in HIIT-D (15.5%, p = 0.048) but not in HIIT-S (9.3%, p = 0.290).ConclusionSix HIIT sessions over 5 days was as effective in increasing VO2max and endurance capacity and was more effective in improving submaximal exercise fat oxidation than 6 HIIT sessions over 2 weeks.  相似文献   

13.
This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set?=?30:15:15:continued to fatigue) with BFR (110?mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4?h post-exercise. mRNA expression was determined using real-time RT–PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p?=?0.05) at 2?h following BFR (1.3?±?0.8) compared to CON (0.4?±?0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2?h (5.9?±?1.3 vs. 2.1?±?0.8; p?=?0.03) and 4?h (3.2?±?0.8 vs. 1.5?±?0.4; p?=?0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2?h (5.2?±?2.8 vs 1.7?±?1.1; p?=?.02) and 4?h (6.8?±?4.9 vs. 2.5?±?2.7; p?=?.01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.  相似文献   

14.
PurposeThe purpose of the study was to (1) examine the relationship between self-reported symptoms and concussion-related eye tracking impairments, and (2) compare gait performance between (a) adolescents with a concussion who have normal eye tracking, (b) adolescents with a concussion who have abnormal eye tracking, and (c) healthy controls.MethodsA total of 30 concussed participants (age: 14.4 ± 2.2 years, mean ± SD, 50% female) and 30 controls (age: 14.2 ± 2.2 years, 47% female) completed eye tracking and gait assessments. The BOX score is a metric of pupillary disconjugacy, with scores <10 classified as normal and ≥10 abnormal. Symptoms were collected using the Post-Concussion Symptom Scale (PCSS), and gait speed was measured with triaxial inertial measurement units. We conducted a linear regression to examine the relationship between PCSS and BOX scores and a two-way mixed effects analysis of variance to examine the effect of group (abnormal BOX, normal BOX, and healthy control) on single- and dual-task gait speed.ResultsThere was a significant association between total PCSS score and BOX score in the concussion group (β = 0.16, p = 0.004, 95% confidence interval (95%CI): 0.06‒0.27), but not in the control group (β = 0.21, p = 0.08, 95%CI: –0.03 to 0.45). There were no significant associations between PCSS symptom profiles and BOX scores in the concussion or control groups. There were also no significant differences in single-task (Abnormal: 1.00 ± 0.14 m/s; Normal: 1.11 ± 0.21 m/s; Healthy: 1.14 ± 0.18 m/s; p = 0.08) or dual-task (Abnormal: 0.77 ± 0.15 m/s; Normal: 0.84 ± 0.21 m/s; Healthy: 0.90 ± 0.18 m/s; p = 0.16) gait speed.ConclusionThe concussed group with impaired eye tracking reported higher total symptom severity, as well as worse symptom severity across the 5 PCSS symptom domain profiles. However, eye tracking deficits did not appear to be driven by any particular symptom domain. While not statistically significant, the slower gait speeds in those with abnormal BOX scores may still be clinically relevant since gait-related impairments may persist beyond clinical recovery.  相似文献   

15.
PurposeTo investigate the link between peak oxygen uptake and regional body composition by dual energy X-ray absorptiometry (DEXA) in Japanese subjects.MethodsA total of 93 men (42.2 ± 12.3 years old) and 106 women (43.5 ± 12.3 years old) were enrolled in this cross-sectional investigation study. Peak oxygen uptake was measured by the breath-by-breath method. Regional body composition i.e., body fat mass, lean body mass, and body fat percentage was evaluated using DEXA. In addition, metabolic risk parameters were also evaluated.ResultsPeak oxygen uptake was 37.6 ± 8.7 mL/kg/min in men and 31.1 ± 6.4 mL/kg/min in women, and decreased with age in both genders. Peak oxygen uptake was significantly correlated with total body fat percentage (men: r = −0.684, p < 0.0001; women: r = −0.681, p < 0.0001). These associations remained even after adjusting for age and total lean body mass. However, peak work rate was positively and significantly correlated with leg lean body mass.ConclusionPeak oxygen uptake was closely correlated with total body fat percentage in both genders. Aerobic exercise as well as leg resistance training might be useful for improving peak oxygen uptake in Japanese subjects.  相似文献   

16.
The effect of altering the rest period on adaptations to high-repetition resistance training is not well known. Eighteen active females were matched according to leg strength and repeated-sprint ability and randomly allocated to one of two groups. One group performed resistance training with 20-s rest intervals between sets, while the other group employed 80-s rest intervals between sets. Both groups performed the same total training volume and load. Each group trained 3 days a week for 5 weeks [15- to 20-repetition maximum (RM), 2 - 5 sets]. Repeated-sprint ability (5x6-s maximal cycle sprints), 3-RM leg press strength, and anthropometry were determined before and after each training programme. There was a greater improvement in repeated-sprint ability after training with 20-s rest intervals (12.5%) than after training with 80-s rest intervals (5.4%) (P = 0.030). In contrast, there were greater improvements in strength after training with 80-s rest intervals (45.9%) than after training with 20-s rest intervals (19.6%) (P = 0.010). There were no changes in anthropometry for either group following training. These results suggest that when training volume and load are matched, despite a smaller increase in strength, 5 weeks of training with short rest periods results in greater improvements in repeated-sprint ability than the same training with long rest periods.  相似文献   

17.
ObjectiveIn this review, we critically evaluate studies directly comparing the effects of plyometric vs. resistance training on skeletal muscle hypertrophy.MethodsWe conducted electronic searches of PubMed/MEDLINE, Scopus, SPORTDiscus, and Web of Science to find studies that explored the effects of plyometric vs. resistance training on muscle hypertrophy.ResultsEight relevant studies were included in the review. Six studies compared the effects of plyometric vs. resistance training on muscle hypertrophy, while 2 studies explored the effects of combining plyometric and resistance training vs. isolated resistance training on acute anabolic signaling or muscle hypertrophy. Based on the results of these studies, we conclude that plyometric and resistance training may produce similar effects on whole muscle hypertrophy for the muscle groups of the lower extremities. Therefore, it seems that plyometric training has a greater potential for inducing increases in muscle size than previously thought. Despite the findings observed at the whole muscle level, the evidence for the effects of plyometric training on hypertrophy on the muscle fiber level is currently limited for drawing inferences. Compared to isolated resistance training, combining plyometric and resistance exercise does not seem to produce additive effects on anabolic signaling or muscle growth; however, this area requires future study. The limitations of the current body of evidence are that the findings are specific to (a) musculature of the lower extremities, (b) short-term training interventions that lasted up to 12 weeks, and (c) previously untrained or recreationally active participants.ConclusionThis review highlights that plyometric and resistance training interventions may produce similar effects on whole muscle hypertrophy, at least for the muscle groups of the lower extremities, in untrained and recreationally trained individuals, and over short-term (i.e., ≤12 weeks) intervention periods.  相似文献   

18.
This study investigated the autonomic and haemodynamic responses to different aerobic exercise loads, with and without blood flow restriction (BFR). In a crossover study, 21 older adults (8 males and 13 females) completed different aerobic exercise sessions: low load without BFR (LL) (40% VO2max), low load with BFR (LL-BFR) (40% VO2max + 50% BFR) and high load without BFR (HL) (70% VO2max). Heart rate variability and haemodynamic responses were recorded during rest and throughout 30 min of recovery. HL reduced R–R interval, the root mean square of successive difference of R–R intervals and high frequency during 30 min of recovery at a greater magnitude compared with LL and LL-BFR. Sympathetic–vagal balance increased the values for HL during 30 min of recovery at a greater magnitude when compared with LL and LL-BFR. Post-exercise haemodynamic showed reduced values of double product at 30 min of recovery compared to rest in LL-BFR, while HL showed higher values compared to rest, LL-BFR and LL. Reduced systolic blood pressure was observed for LL-BFR (30 min) compared to rest. Autonomic and haemodynamic responses indicate lower cardiovascular stress after LL-BFR compared to HL, being this method, besides the functional adaptations, a potential choice to attenuate the cardiovascular stress after exercise in older adults.  相似文献   

19.
BackgroundIndividuals with diabetes have greater central arterial stiffness, wave reflections, and hemodynamics, all of which promote the accelerated cardiovascular pathology seen in this population. Acute aerobic exercise has been shown to be an effective strategy for reducing central arterial stiffness, wave reflections, and hemodynamics in healthy individuals; however, the effects of acute aerobic exercise in reducing these outcomes is not well established in people with diabetes. Recently, implementation of high-intensity interval exercise (HIIE) has shown superior improvements in cardiovascular health outcomes when compared to traditional aerobic exercise. Yet, the effect of HIIE on the aforementioned outcomes in people with diabetes is not known. The purpose of this study was to (i) describe the central arterial stiffness, wave reflections, and hemodynamic responses to a bout of HIIE and moderate-intensity continuous exercise (MICE) in adults with diabetes; and (ii) compare the effects of HIIE and MICE on the aforementioned outcomes.MethodsA total of 24 adult men and women (aged 29–59 years old) with type 1 (n = 12) and type 2 (n = 12) diabetes participated in a randomized cross-over study. All participants completed the following protocols: (i) HIIE: cycling for 4 × 4 min at 85%–95% of heart rate peak (HRpeak), interspersed with 3 min of active recovery at 60%–70%HRpeak; (ii) MICE: 33 min of continuous cycling at 60%–70%HRpeak; and (iii) control (CON): lying quietly in a supine position for 30 min.ResultsA significant group × time effect was found for changes in central systolic blood pressure (F = 3.20, p = 0.01) with a transient reduction for the HIIE group but not for the MICE or CON groups. There was a significant group × time effect for changes in augmentation index at a heart rate of 75 beats/min (F = 2.32, p = 0.04) with a decrease following for HIIE and MICE but not for CON. For all other measures of central arterial stiffness and hemodynamics, no significant changes were observed (p > 0.05).ConclusionA bout of HIIE appears to lead to a greater transient reduction in central systolic blood pressure than the reduction observed following MICE; however, both HIIE and MICE improved augmentation index at a heart rate of 75 beats/min in people with diabetes. There was no significant difference in response to HIIE and MICE in all outcomes. This provides preliminary evidence on the role of HIIE on such outcomes in people with diabetes.  相似文献   

20.
Abstract

Congestive heart failure (CHF) patients experience reduced muscle fatigue resistance and exercise capacity. The aim of this study was to assess whether skeletal muscle in CHF patients has a normal training response compared to healthy subjects. We compared the effect of one-legged knee extensor (1-KE) endurance training in CHF patients (n=10), patients with coronary artery disease (CAD, n=9) and healthy subjects (n=13). The training response was evaluated by comparing trained leg and control leg after the training period. The fall in peak torque during 75 maximal 1-KE isokinetic contractions revealed that CHF patients were less fatigue resistant than healthy subjects in the control leg, but not in the trained leg. Peak power and peak oxygen uptake during dynamic 1-KE exercise was ~10–16% higher in trained leg than control leg. This training response was not significant different between groups. Muscle biopsies of vastus lateralis showed that fibre type composition was not different between trained leg and control leg. Capillary density was 6.5% higher in trained leg than control leg when all groups were pooled. In conclusion, the more fatigable skeletal muscle of CHF patients responds equally to endurance training compared to skeletal muscle of CAD patients and healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号