首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charmonium is a bound state of a charmed quark and a charmed antiquark, and a charmoniumlike state is a resonant structure that contains a charmed quark and antiquark pair but has properties that are incompatible with a conventional charmonium state. While operating at center-of-mass energies from 2 to 5 GeV, the BESIII experiment can access a wide mass range of charmonium and charmoniumlike states, and has contributed significantly in this field. We review BESIII results involving conventional charmonium states, including the first observation of the M1 transition ψ(2S) → γηc(2S) and the discovery of the ψ2(3823) state; and report on studies of charmoniumlike states, including the discoveries of the Zc(3900) and Zc(4020) tetraquark candidates, the resolution of the fine structure of the Y(4260) state, the discovery of the new production process e+e → γX(3872) and the uncovering of strong evidence for the commonality among the X(3872), Y(4260) and Zc(3900) states. The prospects for further research at BESIII and proposed future facilities are also presented.  相似文献   

2.
Applying metal organic frameworks (MOFs) in electrochemical systems is a currently emerging field owing to the rich metal nodes and highly specific surface area of MOFs. However, the problems for MOFs that need to be solved urgently are poor electrical conductivity and low ion transport. Here we present a facile in situ growth method for the rational synthesis of MOFs@hollow mesoporous carbon spheres (HMCS) yolk–shell-structured hybrid material for the first time. The size of the encapsulated Zeolitic Imidazolate Framework-67 (ZIF-67) is well controlled to 100 nm due to the spatial confinement effect of HMCS, and the electrical conductivity of ZIF-67 is also increased significantly. The ZIF@HMCS-25% hybrid material obtained exhibits a highly efficient oxygen reduction reaction activity with 0.823 V (vs. reversible hydrogen electrode) half-wave potential and an even higher kinetic current density (JK = 13.8 mA cm−2) than commercial Pt/C. ZIF@HMCS-25% also displays excellent oxygen evolution reaction performance and the overpotential of ZIF@HMCS-25% at 10 mA cm−2 is 407 mV. In addition, ZIF@HMCS-25% is further employed as an air electrode for a rechargeable Zn–air battery, exhibiting a high power density (120.2 mW cm−2 at 171.4 mA cm−2) and long-term charge/discharge stability (80 h at 5 mA cm−2). This MOFs@HMCS yolk–shell design provides a versatile method for the application of MOFs as electrocatalysts directly.  相似文献   

3.
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) have recently gained tremendous interest because of their unique features in contrast to three-dimensional counterparts and traditional 2D materials. However, although some 2D HOIP ferroelectrics have been achieved, the issue of toxic Pb and uniaxial nature impede their further application. Herein, for the first time, we report a lead-free 2D HOIP multiaxial ferroelectric, [3,3-difluorocyclobutylammonium]2CuCl4 (1), which shows four ferroelectric axes and eight equivalent polarization directions, more than those of the other 2D HOIP ferroelectrics and even the inorganic perovskite ferroelectric BaTiO3 (three ferroelectric axes and six equivalent polarization directions). 1 also features a high Curie temperature of 380 K and exhibits remarkable thermochromism of color change from green-yellow to dark brown. To our knowledge, 1 is the first multiaxial lead-free 2D HOIP ferroelectric. This work sheds light on the exploration of better lead-free 2D HOIP ferroelectrics.  相似文献   

4.
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically non-trivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with the minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/STS) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, and thickness- and angular-dependent transport measurements reveal that the detected superconductivity is quasi-1D and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes.  相似文献   

5.
As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D” layer just above the Earth''s core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+δ (0 < δ < 1, denoted as ‘OE-phase’). It forms at pressures greater than 40 gigapascal when (Mg, Fe)-bearing hydrous materials are heated over 1500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1000 km in the Earth''s mantle. The emergence of oxygen-excess reservoirs out of primordial or subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.  相似文献   

6.
A variety of methods have been used to introduce chemicals into a stream or to mix two or more streams of different compositions using microfluidic devices. In the following paper, the introduction of cryoprotective agents (CPAs) used during cryopreservation of cells in order to protect them from freezing injuries and increase viability post thaw is described. Dimethylsulphoxide (DMSO) is the most commonly used CPA. We aim to optimize the operating conditions of a two-stream microfluidic device to introduce a 10% vol/vol solution of DMSO into a cell suspension. Transport behavior of DMSO between two streams in the device has been experimentally characterized for a spectrum of flow conditions (0.7 < Re < 10), varying initial donor stream concentrations, (1% vol/vol < Co < 15% vol/vol) and different flow rate fractions (0.23 < fq < 0.77). The outlet cell stream concentration is analyzed for two different flow configurations: one with the cell stream flowing on top of the DMSO-rich donor stream, and the other with the cell stream flowing beneath the heavy DMSO-laden stream. We establish a transition from a diffusive mode of mass transfer to gravity-influenced convective currents for Atwood numbers (At) in the range of (1.7 × 10−3 < At < 3.1 × 10−3) for the latter configuration. Flow visualization with cells further our understanding of the effect of At on the nature of mass transport. Cell motion studies performed with Jurkat cells confirm a high cell recovery from the device while underscoring the need to collect both the streams at the outlet of the device and suggesting flow conditions that will help us achieve the target DMSO outlet concentration for clinical scale flow rates of the cell suspension.  相似文献   

7.
The quantum Hall effect (QHE) with quantized Hall resistance of h/νe2 started the research on topological quantum states and laid the foundation of topology in physics. Since then, Haldane proposed the QHE without Landau levels, showing nonzero Chern number |C| = 1, which has been experimentally observed at relatively low temperatures. For emerging physics and low-power-consumption electronics, the key issues are how to increase the working temperature and realize high Chern numbers (C > 1). Here, we report the experimental discovery of high-Chern-number QHE (C = 2) without Landau levels and C = 1 Chern insulator state displaying a nearly quantized Hall resistance plateau above the Néel temperature in MnBi2Te4 devices. Our observations provide a new perspective on topological matter and open new avenues for exploration of exotic topological quantum states and topological phase transitions at higher temperatures.  相似文献   

8.
Discrete-scale invariance (DSI) is a phenomenon featuring intriguing log-periodicity that can be rarely observed in quantum systems. Here, we report the log-periodic quantum oscillations in the longitudinal magnetoresistivity (ρxx) and the Hall traces (ρyx) of HfTe5 crystals, which reveal the DSI in the transport-coefficients matrix. The oscillations in ρxx and ρyx show the consistent logB-periodicity with a phase shift. The finding of the logB oscillations in the Hall resistance supports the physical mechanism as a general quantum effect originating from the resonant scattering. Combined with theoretical simulations, we further clarify the origin of the log-periodic oscillations and the DSI in the topological materials. This work evidences the universality of the DSI in the Dirac materials and provides indispensable information for a full understanding of this novel phenomenon.  相似文献   

9.
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single-crystalline epitaxy for multiferroic (1-x)BiTi(1-y)/2FeyMg(1-y)/2O3–(x)CaTiO3 (BTFM–CTO) solid solution in large area, confirming its ferroelectricity at the atomic scale with strong spontaneous polarization. Careful compositional tuning leads to a bulk magnetization of 0.07 ± 0.035 μB/Fe at room temperature, enabling magnetically induced polarization switching exhibiting a large magnetoelectric coefficient of 2.7–3.0 × 10−7 s/m. This work demonstrates the great potential of solution processing in large-scale complex oxide epitaxy and establishes novel room-temperature magnetoelectric coupling in epitaxial BTFM–CTO film, making it possible to explore a much wider space of composition, phase, and structure that can be easily scaled up for industrial applications.  相似文献   

10.
Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6–310 mg gallic acid equivalent/g fresh weight (fw), and 46.6–733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44–58 %), hydrogen peroxide (15.3–18.6 %), and hydroxyl radicals (50–85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.  相似文献   

11.
Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (TC) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their TC, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-TC 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that TC of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the TC enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, TC can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.  相似文献   

12.
Understanding the mineralogy of the Earth''s interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800–2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2Hx (x ≤ 1) phase. The (Mg, Fe)O2Hx has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2Hx is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+ and H+). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.  相似文献   

13.
The westward expansion of human millet consumption from north China has important implications for understanding early interactions between the East and West. However, few studies have focused on the Xinjiang Uyghur Autonomous Region, the vast geographical area directly linking the ancient cultures of the Eurasian Steppe and the Gansu Corridor of China. In this study, we present the largest isotopic investigation of Bronze Age China (n = 110) on material from the key site of Tianshanbeilu, in eastern Xinjiang. The large range of δ13C values (–17.6‰ to –7.2‰; –15.5 ± 1.2‰) provides direct evidence of unique dietary diversity and consumption of significant C4 resources (millets). The high δ15N results (10.3‰ to 16.7‰; 14.7 ± 0.8‰) likely reflect sheep/goat and wild game consumption and the arid climate of the Taklamakan Desert. Radiocarbon dates from four individuals indicate Tianshanbeilu was in use between 1940 and 1215 cal bc. The Tianshanbeilu results are then analysed with respect to 52 Bronze Age sites from across Eurasia, to investigate the spread and chronology of significant human millet consumption and human migration. This isotopic survey finds novel evidence that the second millennium bc was a dynamic period, with significant dietary interconnectivity occurring between north China, Central Asia and Siberia. Further, we argue that this ‘Isotopic Millet Road’ extended all the way to the Mediterranean and Central Europe, and conclude that these C4 dietary signatures of millet consumption reflect early links (migration and/or resource transfer) between the Bronze Age inhabitants of modern-day China and Europe.  相似文献   

14.
The misfolding of amyloid-β (Aβ) peptides from the natural unfolded state to β-sheet structure is a critical step, leading to abnormal fibrillation and formation of endogenous Aβ plaques in Alzheimer''s disease (AD). Previous studies have reported inhibition of Aβ fibrillation or disassembly of exogenous Aβ fibrils in vitro. However, soluble Aβ oligomers have been reported with increased cytotoxicity; this might partly explain why current clinical trials targeting disassembly of Aβ fibrils by anti-Aβ antibodies have failed so far. Here we show that Au23(CR)14 (a new Au nanocluster modified by Cys-Arg (CR) dipeptide) is able to completely dissolve exogenous mature Aβ fibrils into monomers and restore the natural unfolded state of Aβ peptides from misfolded β-sheets. Furthermore, the cytotoxicity of Aβ40 fibrils when dissolved by Au23(CR)14 is fully abolished. More importantly, Au23(CR)14 is able to completely dissolve endogenous Aβ plaques in brain slices from transgenic AD model mice. In addition, Au23(CR)14 has good biocompatibility and infiltration ability across the blood–brain barrier. Taken together, this work presents a promising therapeutics candidate for AD treatment, and manifests the potential of nanotechnological approaches in the development of nanomedicines.  相似文献   

15.
The superconductivity of hydrides under high pressure has attracted a great deal of attention since the recent observation of the superconducting transition at 203 K in strongly compressed H2S. It has been realized that the stoichiometry of hydrides might change under high pressure, which is crucial in understanding the superconducting mechanism. In this study, PH3 was studied to understand its superconducting transition and stoichiometry under high pressure using Raman, IR and X-ray diffraction measurements, as well as theoretical calculations. PH3 is stable below 11.7 GPa and then it starts to dehydrogenate through two dimerization processes at room temperature and pressures up to 25 GPa. Two resulting phosphorus hydrides, P2H4 and P4H6, were verified experimentally and can be recovered to ambient pressure. Under further compression above 35 GPa, the P4H6 directly decomposed into elemental phosphorus. Low temperature can greatly hinder polymerization/decomposition under high pressure and retains P4H6 up to at least 205 GPa. The superconductivity transition temperature of P4H6 is predicted to be 67 K at 200 GPa, which agrees with the reported result, suggesting that it might be responsible for superconductivity at higher pressures. Our results clearly show that P2H4 and P4H6 are the only stable P–H compounds between PH3 and elemental phosphorus, which is helpful for shedding light on the superconducting mechanism.  相似文献   

16.
17.
The phylogenetic position of hyoliths has long been unsettled, with recent discoveries of a tentaculate feeding apparatus (‘lophophore’) and fleshy apical extensions from the shell (‘pedicle’) suggesting a lophophorate affinity. Here, we describe the first soft parts associated with the feeding apparatus of an orthothecid hyolith, Triplicatella opimus from the Chengjiang biota of South China. The tuft-like arrangement of the tentacles of T. opimus differs from that of hyolithids, suggesting they collected food directly from the substrate. A reassessment of the feeding organ in hyolithids indicates that it does not represent a lophophore and our analysis of the apical structures associated with some orthothecids show that these represent crushed portions of the shell and are not comparable to the brachiopod pedicle. The new information suggests that hyoliths are more likely to be basal members of the lophotrochozoans rather than lophophorates closely linked with the Phylum Brachiopoda.  相似文献   

18.
A series of ternary organic photovoltaics (OPVs) are fabricated with one wide bandgap polymer D18-Cl as donor, and well compatible Y6 and Y6-1O as acceptor. The open-circuit-voltage (VOC) of ternary OPVs is monotonously increased along with the incorporation of Y6-1O, indicating that the alloy state should be formed between Y6 and Y6-1O due to their excellent compatibility. The energy loss can be minimized by incorporating Y6-1O, leading to the VOC improvement of ternary OPVs. By finely adjusting the Y6-1O content, a power conversion efficiency of 17.91% is achieved in the optimal ternary OPVs with 30 wt% Y6-1O in acceptors, resulting from synchronously improved short-circuit-current density (JSC) of 25.87 mA cm−2, fill factor (FF) of 76.92% and VOC of 0.900 V in comparison with those of D18-Cl : Y6 binary OPVs. The JSC and FF improvement of ternary OPVs should be ascribed to comprehensively optimal photon harvesting, exciton dissociation and charge transport in ternary active layers. The more efficient charge separation and transport process in ternary active layers can be confirmed by the magneto-photocurrent and impedance spectroscopy experimental results, respectively. This work provides new insight into constructing highly efficient ternary OPVs with well compatible Y6 and its derivative as acceptor.  相似文献   

19.
Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.There has been a recent interest in developing diodes1–4 and transistors4–8 that conduct and modulate ion currents. Such non-linear iontronic components are, for example, interesting as they allow further control of ions in, for instance, electrophoretic drug delivery devices. A range of microfabricated diodes,9–11 transistors,12,13 and circuits9,14 has been constructed using ion-selective membranes. These membranes contain fixed charges of either polarity, compensated by mobile ions of opposite charge (counter-ions). When immersed in an electrolyte, counter-ions can move through the membrane, while ions with the same charge as the fixed charges (co-ions) are repelled. This renders the membrane selective for the counter-ion and can therefore be considered as p- or n-type ion conductors. By combining two membranes of opposite polarity, a bipolar membrane (BM) configuration is obtained15 (Figure 1(a)). The BM junction can be biased by an ion current in the reverse and forward directions, respectively.16,17 This modulates the ion concentration inside the BM, and thus the ionic conductivity, which then results in an current rectification.2,18 In the three-terminal ion bipolar junction transistor12 (IBJT), an ion-selective base (B) is connected to oppositely selective emitter (E) and collector (C), forming two BM configurations (EB and BC) (Figure 1(b)). pnp- and npn-IBJTs have been constructed14 from photolithography patterned poly(styrene sulfonate) (PSS, p-selective) and quaternized poly(vinylbenzyl chloride) (n-selective) as emitter, collector, and base. In these devices, a neutral poly(ethylene glycol) (PEG) electrolyte is typically inserted into the junction to separate the base from the emitter and collector,12 in order to avoid19 electric field enhanced (EFE) water dissociation16 (Figure 1(a)). EFE water dissociation is typically observed in BMs20 and produces water ions inside the BM under reverse bias, which prevents proper IBJT operation. In PEG-IBJTs, the current between the emitter and collector (IC) is thus modulated by controlling the ion concentration inside the PEG-junction.21 Ions are injected or extracted into the junction depending on the bias of the base (VEB). In a npn-IBJT, a positive bias is typically applied between emitter and collector (VEC), thus allowing anions to migrate from the emitter to the collector. In the cut-off mode (Figure 1(c)), a negative bias VEB is applied, resulting in reverse bias of both EB and BC. Cations in the junction will migrate into the base, while anions will primarily migrate into the collector, due to the higher collector bias. This base current (IB) will extract ions from the junction, which decreases the ionic conductivity in the junction resulting in a low IC. Eventually, the resistive characteristics for ion charge transport, between the emitter and collector, will be entirely dominated by the junction. This gives that most of the applied VEC is consumed across the junction with only a minimal voltage potential drop across the emitter and base terminals.Open in a separate windowFIG. 1.(a) The modes of operation for a BM; forward bias (high conduction and ion accumulation), reverse bias (low conduction and ion depletion), and EFE water dissociation (high conduction, formation of ions). (b) Illustrations of an npn-IBJT, with anion-selective emitter (E) and collector (C) forming a junction with a cation-selective base (B). (c) In cut-off mode, the base and collector extract ions from the junction, prohibiting co-ion migration through the base. (d) In active mode, the forward biased EB injects ions into the base, thus allowing anions from the emitter to migrate as co-ions through the base into the collector.In the active-mode of the npn-IBJT (Figure 1(d)), the VEB bias at the base is reversed (i.e., now positive). This causes injection of cations, from the base, and anions, from the emitter, into the junction. As the ion concentration increases, anions from the emitter can start to drift across the junction to the collector, thus a high IC is obtained. The high concentration of ions inside the junction is reflected in a low resistive value for ion transport. This now causes the voltage to drop over the emitter and collector terminals, thus lowering the EB forward bias and the injection of ions from the base. At the collector-junction interface, the extraction of anions produces an ion depletion zone and a corresponding voltage drop. Thus, in the active-mode, the applied VEC is primarily consumed across the emitter and collector terminals and also at the collector-junction interface.The switching speed of an IBJT should be strongly correlated to the distance separating the emitter and collector,14 as this length determines the volume that needs to be filled or emptied with ions causing modulation of ions in the junction. To achieve a fast-switching IBJT, the junction volume, i.e., the collector-emitter separation, should be as small as possible. However, EFE water dissociation must be avoided since this process ruin the IBJT operation. EFE water dissociation is, in part, driven by the appearance of a large potential drop across a small distance, as occurring at the interface of a BM under reverse bias, producing a high electric field that accelerates the forward reaction rate of water auto-dissociation.16 Miniaturization of the collector-emitter distance is therefore problematic, as the separation inside the EB and BC BMs evidently also mush shrink, resulting in higher reverse bias electric fields across the BMs and thus promoting EFE water dissociation. The problem of EFE water dissociation in an IBJT primarily manifests itself in the cut-off mode, as water ions are generated in the reversed biased EB and BC BMs. These ions produce an elevated cut-off IC, and hence deteriorate the IBJTs on–off performance. Here, we report an IBJT, in which the EFE water dissociation is avoided by the use of a novel polyphosphonium-based anion-selective material, which previously has been shown to prevent EFE water dissociation in BM diodes.11 This allows the collector and emitter to directly contact the base without an intermediate PEG-layer. Without the need for a PEG-separator inside the BMs, the collector-emitter distance is reduced to only 2 μm.Polyphosphonium-based npn-IBJTs were produced following the same manufacturing protocol as was reported for polyphosphonium-based ion diodes.11 Conjugated polymer electrodes and cation-selective base was patterned from ∼200 nm thick poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film on polyethylene terephthalate-sheets using photolithography and dry-etching. The base was rendered electronically insulating by chemical overoxidation via exposure to sodium hypochlorite through a mask. A 2 μm thick SU8-layer was patterned on-top of this configuration, with an opening defining the actual junction. 1 μm thick polyphosphonium-based anion-selective emitter and collector were deposited and patterned using photolithography and dry-etching, to overlap with the base at the opening of the SU8. Finally, a second 10 μm thick layer of SU8 was used to seal the junction. The membranes were hydrated by incubation in dH2O for 24 h before any measurements were carried out. Aqueous 0.1M NaCl electrolytes were used during the measurement. All electrical measurements were performed using a Keithley 2602 source meter.The switching characteristics of the npn-IBJT were obtained by applying VEC of 10 V and alternating VEB at ±3 V for various duration of time, see Figure Figure2.2. A periodic 5 s switching with 8 Hz measurement rate was used to record the dynamics of the turn-on/off characteristics of the device. When VEB switches from −3 to +3 V, there is a quick increase in the IB, as ions from the base and emitter migrate into the emitter/base junction. After a delay of ∼0.25 s, IC starts to increase due to the increased ion concentration in the emitter/base junction and the subsequent diffusion of anions into the base. As the IC increases, the IB decreases as the voltage drop between the emitter and base decreases, and after ∼2 s IC reaches 90% of the steady state on-current level. For longer on-switching times, the IB and IC stay stable over 30 s, after which a small increase is observed. This current-drift in both IB and IC is likely due to the contribution of co-ion migration. As cations from the base migrate into the emitter as co-ions, the conductivity in the emitter increases, leading to an increased IC value. This increases the ion concentration at the base, which gives less selective ion injection and thus more cation injection from the base, i.e., a higher IB.Open in a separate windowFIG. 2.Emitter-collector current response as the IBJT is switched between cut-off (VEB=−3 V) and active mode (VEB = 3 V) for VEC = 10 V, at 5 s and 120 s periods.As VEB is switched back to −3 V, there is a sharp negative peak in IE as ions are extracted from the junction, which occur mainly through the base (cations) and collector (anions) terminals. As the ion concentration in the base drops, IC decreases. The transistor turns off to 10% of the value of the steady state on-current within ∼2 s, regardless of the duration of the on-state. The constant turn-off time indicates that ions are not accumulating to a significant extent inside the junction during the on-steady state but are instead constantly transported out of the junction. When all co-ions have been extracted from the junction, the Donnan exclusion prevents subsequent injection of anions into the base, and IC is therefore low. The on/off ratio of IC reaches above 100.A transfer curve was obtained by scanning VEB between −3 and +3 V while keeping VEC at 10 V (Figure 3(a)). As expected, both IC and IB remain low for negative VEB. In this range, both EB and BC are biased in reverse direction. As VEB turns positive, the EB configuration is switched into forward bias and ions are injected into the junction. This leads to a linear increase in IC vs. VEB. For the reverse scan, a minor hysteresis is observed for both the IC and IB scans, again probably due to the contribution of co-ion migration due to long time operation of the device.Open in a separate windowFIG. 3.Transfer and output curves. (a) The transfer curve is low for negative VEB and increases linearly for positive VEB with approximately zero threshold. (b) The output curves show IC saturating with respect of VEC for positive VEB.The transistor output characteristics were obtained by scanning VEC at different VEB values (Figure 3(b)). The saturation regime, i.e., the bias mode was both EB and BC are in forward bias, was avoided as this has negative impact on the stability of the device. As reported for previous IBJT devices, the output characteristics show a clear saturation behaviour of IC across the entire range of VEC. Further, the IC increases linearly with VEB. The increase of both IC and IB when operating for extended periods of time in the active mode is again attributed to the addition and inclusion of co-ions in the junction. The current gain (IC/IB) at VEC = 10 V decreases with VEB and reaches 43.9, 17.9, and 10.7 for VEB = 1 V, 2 V, and 3 V, respectively. For higher base bias voltages, the ion concentration increases in the junction and thus the injection selectivity decreases.In comparison with previously reported IBJTs,12,14,21 the lack of a neutral electrolyte layer in the junction has an overall positive effect on the device characteristics. Main performance improvements are found in a decrease in the turn-on time from 9 s (for npn-IBJT21) to 2 s, for devices with comparable junction widths and heights. The main contribution to the improved switching speed is likely the decreased length between the emitter and collector. Interestingly, simulations have shown that an extended space charge region (ESCR), for a PEG-IBJT in cut-off mode, can extend several micrometers away from the collector.22 Thus, a PEG-IBJT with an emitter-collector separation of single micrometers should show an increased cut-off current due to the ESCR overlapping in the junction. However, by omitting the PEG in the junction, the ESCR is reduced due to screening from the fixed charges in the BM layers. This enables the IBJT, reported here, to operate with retained low cut-off currents. On-off ratios and ion current gains are approximately equal to previous IBJTs,12,14,21 at above 100 and 10, respectively. The on–off ratio and ion current gain are more dependent on the selectivity of the membranes and the charge of the junction.Further, the need to separate the layers in a PEG-IBJT puts high demands on the patterning resolution and alignment accuracy to reduce the separation between emitter/collector and base. As polyphosphonium allows the IBJT to be built without separation of layers, miniaturization of the junction is relatively easier to obtain. The switching speed can potentially be further improved by retaining the base material between the emitter and collector (see Figure 1(b)), thus allowing for a more direct pathway for IC. This design would, however, require a much more accurate layer alignment or that the base patterned on top of the emitter and collector layers. In general, such modifications of device geometry are simpler to accomplish with the non-EFE water dissociating polyphosphonium as fewer active layers are used, suggesting a further use of polyphosphonium to improve switching speed and miniaturization of IBJTs. Such further advancement in IBJT performance would be welcomed, for example, in the continued work towards complex ionic circuits14 to regulate signalling in bioelectronics and in drug delivery applications, in which generation of dynamic and complex gradients, at high spatial resolution, is of generic interest.  相似文献   

20.
Geophysical observations suggest that the transition zone is wet locally. Continental and oceanic sediment components together with the basaltic and peridotitic components might be transported and accumulated in the transition zone. Low-velocity anomalies at the upper mantle–transition zone boundary might be caused by the existence of dense hydrous magmas. Water can be carried farther into the lower mantle by the slabs. The anomalous Q and shear wave regions locating at the uppermost part of the lower mantle could be caused by the existence of fluid or wet magmas in this region because of the water-solubility contrast between the minerals in the transition zone and those in the lower mantle. δ-H solid solution AlO2H–MgSiO4H2 carries water into the lower mantle. Hydrogen-bond symmetrization exists in high-pressure hydrous phases and thus they are stable at the high pressures of the lower mantle. Thus, the δ-H solid solution in subducting slabs carries water farther into the bottom of the lower mantle. Pyrite FeO2Hx is formed due to a reaction between the core and hydrated slabs. This phase could be a candidate for the anomalous regions at the core–mantle boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号