首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
如图,AB和平面α所成的角是θ,,AC在平面α内,AC和AB的射影AB′,成角θ2.设∠BAC=θ,求证:cosθ1cosθ2=cosθ.  相似文献   

2.
新教材第九章(B)中的第44页有如下公式:cosθ=cosθ1cosθ2,它的几何解释如下:如图1,已知OA是平面α的斜线,A为斜足,OB⊥α,垂足为B,AC为α内任一直线.AO与AB所成的角为θ1(线面角);AB与AC所成的角为θ2(面内角);AO与AC所成的角为θ(面外角).  相似文献   

3.
立体几何课本第117页有一道习题:如图1,AB和平面α所成角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ(1)。此题证明并不难,利用三垂线定理和直角三角形中的边角关系,即可证得。值得指出的是可以引导学生从这个等式中学到更多的东  相似文献   

4.
如图1,直线AB和平面α所成的角是θ1,直线AC在平面α内,AC和AB的射影AB’所成的角为θ2,设∠BAC=θ,则cosθ1cosθ2=cosθ.此公式在新教材中列为了必学的内容,大大提高了其地位.下面举例谈谈它的应用.一、用于求直线与平面所成的角  相似文献   

5.
在高中立体几何课本中,有一道习题如下:如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB′成θ_2角,设∠BAC=θ,求证:cosθ=cosθ_1cosθ_2 (1) 运用公式(1),需具备如下条件: 在三面角中,若两个面角所在的平面成直二面角,那么它所对面角的余弦等于这两个面角的余弦之积。公式(1)是球面三角中三面角余弦定理的特殊情  相似文献   

6.
斜线AB与平面α所成的角为θ1,A为斜足,AC在α内,且与AB的射影成θ2角,∠BAC= θ,则有cosθ=cosθ1cosθ2(*). 这个公式在新教材中要求学生掌握.笔者在教学实践中发现,学生对它的应用很不熟悉.本 文试图归纳它的几个应用.  相似文献   

7.
巧用公式cosθ=cosθ1·cosθ2能妙解许多问题,下面举例说明.一、用于求空间角例1如图1,PA是平面α的斜线,∠BAC=90°,又∠PAB=∠PAC=60°,求PA与平面α所成的角.  相似文献   

8.
高中数学课本[人教版第二册(下B)p.44]给出了公式cosθ=cosθ1·cosθ2,其中公式中的θ1是斜线与平面所成的角,θ2是平面内的直线与斜线在平面内的射影所成的角,而θ是斜线与平面内的直线所成的角,当平面内的直线不过斜足时,θ就是两条异面直线所成的角.对某些两条异面直线所成的角以及斜线和平面所成的角问题,灵活应用此公式可比较方便的解决,下面举例说明.图11应用公式求两条异面直线所成的角例1如图1,在棱长为1的正方体ABCD-A1B1C1D1中,点E、F分别在棱B1C1、C1C上,且EC1=31,FC1=33,求异面直线A1B与EF所成的角.解因为A1B在平面…  相似文献   

9.
统编高中数学第二册P_(100)第九题,如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB成角θ_2,设∠BAC=θ,则 cosθ=cosθ_1·cosθ_2(*) 其证明不难,但运用有一定的广泛性。兹举凡例说明之。例1:已知一个直角三角形的两直角边长为a、b,把它沿斜边上的高折成直二面角,求两边夹角的余弦  相似文献   

10.
在立体几何中 ,有一个常见的模型 :图 1        图 2如图 1,已知直线a、b、l与平面α满足a α ,b α ,a∩b =P ,P∈l ,l与a、b成相等的角θ ,在l上任取异于点P的Q点 ,过Q作QK⊥α于K ,那么K点到直线a、b的距离相等 ,即K点落在∠APB(或其补角 )的平分线所在的直线上 ,记∠QPK =θ1 ,∠KPB =θ2 ,不难得到cosθ =cosθ1 ·cosθ2 .运用上述结论 ,可解决过空间一点P且与两直线 (包括二异面直线 )成等角的直线的条数问题 .2 0 0 4年高考数学 (湖北卷 )第 11题 :已知平面α与 β所成的二面角为 80° ,P为α、β外一定点 ,过点P…  相似文献   

11.
高中数学课本[人教版第二册(下B)p.44]给出了公式cosθ=cosθ1·cosθ2,其中公式中的θ1是斜线与平面所成的角,θ2是平面内的直线与斜线在平面内的射影所成的角,而θ是斜线与平面内的直线所成的角,当平面内的直线不过斜足时,θ就是两条异面直线所成的角. 对某些两条异面直线所成的角以及斜线和平面所成的角问题,灵活应用此公式可比较方便的解决,下面举例说明.  相似文献   

12.
高中数学课本第二册(下B)的夹角与距离部分有这样一个典型问题:已知AO是平面α的斜线,A是斜足,直线OB⊥α,垂足是B,直线AB是斜线OA在α上的射影,AC是平面α内的一条直线,且BC⊥AC,垂足是C,设AO与AC所成的角为θ,AO与AB所成的角为θ1,AC与AB所成的角为θ2,则  相似文献   

13.
现行《立体几何》课本第116页的总复习参考题第3题是这样叙述的:如图,AB和平面α所成的角是0_1,AC在平面α内,AC和AB的射影AB′成角0_2,设∠BAC=0,求证:  相似文献   

14.
在立体几何中,有一个常见的模型 如图1,已知直线a、b、l与平面α满足a(α, b(α, a∩b=P, P∈l, l与a、b成相等的角θ,在l上任取异于点P的Q点,过Q作QK⊥α于K,那么K点到直线a、b的距离相等,即K点落在∠APB(或其补角)的平分线所在的直线上,记∠QPK=θ1, ∠KPB=θ2,不难得到cosθ=cosθ1·cosθ2.  相似文献   

15.
若平面的一条斜线与这个平面所成的角为α,平面内的一条直线与这条斜线及其射影所成的锐角(或直角)分别为θ及β.则有cosθ=cosα·cosβ。  相似文献   

16.
如图1,AP与平面α所成角是θ1,AC在平面α内,AC与AP在平面α内的射影AB所成角是θ2.AP与AC所成角是θ,则有  相似文献   

17.
新教材第二册(下B)9.7直线和平面所成的角。讨论了三角余弦的关系式,即cosθ=cosθ1·cosθ2,其中θ是斜线和平面内的直线所成的角,θ1是斜线和平面所成的角,θ2是斜线在面上的射影和面内的直线所成的角.上述关系式隐含着几个重要结论,运用这些隐含结论解决问题,既简捷又方便,巧妙性、灵活性更是不言而喻。下面,就隐含结论及其简单应用展示出来,但愿对同仁有所帮助和启示.[第一段]  相似文献   

18.
立体几何教材中有这样一道习题:如图1,AB和平面α所成的角为θ1,AC在平面α内,AC和AB的射影AB′所成的角为θ2,设∠BAC=θ,则有cosθ1 cosθ2=cosθ.将其引申,得如下结论:命题AB和平面所成的角是θ1,AC在平面α内,AC和AB的射影AB′所成的角为θ2,设二面角B-AC-B′为ψ,  相似文献   

19.
高中《立体几何》(必修本)P_(117)总复习参考题第3题.如图1,AB 和平面α所成的角为θ_1,AC在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠BAC=θ.求证:cosθ_1·cosθ_2=cosθ.本题只要利用三垂线定理(或逆定理)便可证明.由此不难得到下面两个结论:(1)公式成立的充要条件为角θ_1,θ_2所在的  相似文献   

20.
高中《立体几何》(必修) P_(117)第3题:如图1,AB 和平面 a所成的角是θ_1,AC 在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠ABC=θ.求证:cosθ_1·cosθ_2=cosθ.证明略.显然,题中的θ_1、θ_2、θ都是锐角;由余弦函数的单调性知,cosθ_1>cosθ,且cosθ_2>cosθ.于是θ_1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号