首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在证明四条线段成比例时,我们常常会遇到要证明的四条线段在同一直线上的特殊情形.此时,由于在同一直线上找不到平行或相似三角形,这给证题带来一定的困难.代换法是解决这类问题的行之有效的方法.下面举例说明:一、用等线段代换一般证题思路:要证a:b=c:d,可先证a:b=c:x,再证x=d即可.例1 如图1,在△ABC中,AB=AC,G是中线AD上的一点,过点C作CF∥AB,连结BG延长并分别交AC、CF于点E、F.求证:BG:GE=GF:BG.证明: 连结GC,∵AD是等腰△ABC的底边BC上的中线,∴BG=CG,∠GBC=∠GCB.又∵∠ABC=∠ACB,∴∠ABF=∠ECG.∵CF∥AB…  相似文献   

2.
在平面几何中,求证线段等式a·b=c·d±e·f一类命题,是比较繁难的问题之一。本刊84年第1期发表的《“a·b=c·d±e·f”型命题的一种证明方法》。介绍了这类命题的几何证法,本文谈谈这类命题的三角证法。这类几何命题,可用正弦定理证明,也可用余弦定理证明。设a、b、c、d、e、f都是已知图形中的线段,用正弦定理证明a·b=c·d±e·f,其方法是: 第一步,利用正弦定理,考察已知图形中有关的边和角之间的关系,写出c·c±e·f/a·b的三角表达式; 第二步,根据已知条件,将这个三角表达式化简,证明它的值等于1。例1 在△ABC中(图1),已知∠A=2∠B, 求证BC~2=AC~2 AB·AC。证明设∠B=θ,则∠A=2θ,∠C=180°-3θ。在△ABC中,由正弦定理得  相似文献   

3.
勾股定理是初中几何中的一个极为重要的定理,它在数学解题中有着广泛的应用.本文举例说明勾股定理在几何证题中的应用.例1如图1,在△ABC中,AB=AC,BDAC于D.求证:分析在Rt△BDC和Rt△ADB中,由勾股定理,得于是,要证结论成立,只要证即可.这只要经过适当的恒等变形即得.事实上,故结论可证.证明略.例2如图2,在锐角三角形ABC中,CD是高.求证:分析要证结论成立,只要证:(1)(2)要证.这由勾股定理即得.要证,只要证因为AD+DB=AB,所以此结论成立.故命题结论可证.证明略.例3如图3,在△ABC中,是BC边的…  相似文献   

4.
[斜三角形射影定理] 三角形任一边等于其余两边在这一边上的射影之和,即: a=bcosC+ccosB;b=acosC+ccosA;c=acosB+bcosA. 斜三角形射影定理(以下简称定理)与正、余弦定理一样,在三角、几何证题中有着广泛的应用,本文各例旨在说明其在三角证明中的应用。  相似文献   

5.
定理“平行于三角形一边的直线在其他两边上截得的对应线段成比例”及定理“若干条平行线截两条直线,则截得的对应线毁成比例”统称为平行截割定理。平行截割定理可用来证明包含有(或隐含有)线段平行的几何图形的几何命题。证题类型有:直接应用于证明线段的比例式或乘积式;结合题设、图形性质及有关定理间接地证明线段相等、角相等、定值等多种类型。还可以结合成比例线段定理,如相似三角形判定及性质定理、三角形内(外)角平  相似文献   

6.
正弦定理在任何三角形中,边和对角的正弦成正比: a/sin A=b/sin B=c sin C. 证明:令A、B和C是任意三角形的内角,并令a、b和c为它们的对边.我们考察两种三角形,一种是所有角都为锐角的三角形(图1(a)),另一种是有一个角为钝角的三角形,这里这个角为角A(图1(b)).  相似文献   

7.
平面向量基本定理:如果e1,e2是同一平面内两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.这是一个重要的定理,它反映了平面向量分解的唯一性,利用此唯一性可解决求相交线交成线段比的问题.这类题的关键是:首先选择恰当的基底,再将同一向量用两种不同方法表示,由平面向量基本定理得出方程组解出.例1求证:平行四边形ABCD的对角线互相平分.图1证明:如图1,设AB=a,AD=b,AC与BD相交于O,AO=λAC=λ(a+b),BO=μBD=μ(a-b),则b=AB=AO-BO=λ(a+b)-μ(a-b)=(λ-μ)a+(λ+μ)b由平面向量基本定理知…  相似文献   

8.
在△ABC中,正弦定理可以写成:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径),这个关系不仅揭示了三角形的边角关系,而且也表明了圆中的弦和所张圆周角之间的关系,因此利用正弦定理,我们既可以解三角形,又可以将三角形中边的关系及角的关系相互转化来证明几何问题。为了实现快速转化,请大家一定要熟练掌握正弦定理的如下变换形式:  相似文献   

9.
证明线段比例式(或等积式),特别是证明圆中的线段比例式(或等积式)是全国各省市中考命题的重点和热点.因此,同学们学习因这一意时,要系统掌握这类命题的证题思路.证明这类命题的基本思路是:1.利用相似三角形.2.利月圆幕定理(相支弦定理、切割线定理和割线定理统称国幕定理).3利用平行线分线段成比例定理或其推论.其中用得最多的是相似三角形.下面举例说明,供参考.例1已知:如图1,四边形ABCH内接于00,过点D的切线HP//AB,DP与AC的延长线相交于点P.求证:CD‘一CB·CP.(1996年河北省中考题)分析欲证CD’…  相似文献   

10.
在△ABC中,设BC=a,AC=b,AB=c.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC本文试图从多角度探索这一定理的证明方法,供大家参考考。以下均以锐角三角形为例,钝角三角形的情况可仿照证明。  相似文献   

11.
证明在同一条直线上的三线段a,b,c成b~2=ac形式,同学们常感困难.究其原因,由于线段a、b、c不显见于两个三角形中,无法直接通过三角形相似达到目的.本文想通过具体例子谈谈这个问题的基本证题思路.  相似文献   

12.
1.a∶ b=c∶ d型这类比例式一般分两种情况 , .成比例线段的前项和后项在一条直线上。即在 a∶ b=c∶ d中 ,a、b在一条直线上 ,c、d在一条直线上。它的证题方法是用平行线分线段成比例定理及其推论证明。 .成比例的线段的前项和后项不在同一直线上。它的证题方法是找两个角相等的相似三角形。例 1.如图 :由△ ABC中 BC边的中点 D引直线交 AC及 BA的延长线交于 E、F。求证 :EA∶ EC=FA∶ FB。分析 :若过 A点作 AG∥ BC交 FD于 G点。则易知 FA∶ FB=AG∶ BD=AG∶ DC=AE∶ EC。2 .an∶ bn=c∶ d型欲证等式 an∶ bn=c∶ d形…  相似文献   

13.
同学们都熟知,在△ABC中,A、B、C为三个内角,a,b,c为三边,R为△ABC的外接圆半径,则有正弦定理 a/sinA=b/sinB=c/sinC=2R 正弦定理它是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理.灵活运用正弦定理解几何题,往往可以避免因添设辅助线所带来的困难,而且在许多情况下,能使证明思路清晰,解法简捷明快.  相似文献   

14.
证明线段成比例时,应先观察所证的成比例的四条线段在图形中的分布情况:(1)若恰有两条线段在同一直线上且是比的形式时,符合平行线(parallel lines)截得比例线段定理,因此必须要有平行线或添加平行线;(2)若是对应线段恰好分布在一对三角形中时,往往要证明线段所在的这两个三角形相似。  相似文献   

15.
本文介绍证明线段相等的新方法——比例式法.用比例式法证明线段相等有以下几种类型:一、要证线段a=b,可先证a/b=b/a例1 已知:从△ABC的AB边上一点P作PQ//BC,交AC于Q;从Q作QR//AB,交BC于R;从R作CA的平行线,恰好过P点.求证:P是AB的中点.分析 如图1,要证AP=PB,可从关于AP、PB的比例式着手.由PQ//BC,PR//AC知道AP:PB=AQ:QC,PB:PA=BR:RC.而QR//AB,则AQ:QC=BR:RC,故得AP:PB=PB:AP.∴AP=PB.即P是AB的中点.  相似文献   

16.
题在△月汪弓C中,若匕A一1200,AB一5, BC~7,则△乃BC的面积S一 (05年上海高考题) 正弦定理和余弦定理是解三角形的重要工 具,本题我们分别用正弦定理与余弦定理解之. 所以 14派.二._、 b一一一不下一.sin弋八十七) j 用正弦定理解 在△ABC中,由正弦定理得 B狄 A‘esr自C  相似文献   

17.
有一道好题,它囊括了所有与“相似形”有关的知识点:比例线段及其性质、平行线分线段成比例定理、相似三角形的判定与性质. 题如图1,已知△ABC中,D、E分别在AB、AC上,且DE∥BC,DE=a,BC=b(b>a).求作线  相似文献   

18.
众所周知;a=5的一个充要条件是a≥b且a≤b.利用这一事实证明有关恒等式,思路别致,独树一帜.下面举例说明.例1(1983年合肥市数学竞赛题)在是直角三角形证将已知等式变形,得由(2)知,A、B均为锐角,于是综合(2)、(3),命题获证.例2已知a、β、γ为锐角.且cosa=证由对称性,不妨设将题设代入(2),得比较(1)、(3),得由β=γ及题设命题获证.例3已知证由已知不等式,得两式相乘,得例4在矩形ABCD中,BC=2AB,E为AD上一点,且∠DCE=15°,求证:BC=BE.证如图1结合假设假设BE≤BC,则上述推理过程中不等号均反向,导出BC≤BE…  相似文献   

19.
正弦定理和余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角函数与几何产生联系.为求与三角形有关的量:如面积、外接圆半径、内切圆半径等提供了理论依据,也是判定三角形形状、证明与三角形有关的三角恒等式的重要依据.正弦、余弦定理是沟通三角形中有关边与角之间的关系的重要定理,应用时要注意对一些变式进行灵活地应用.如正弦定理sianA=bsinB=sincC(R为三角形ABC的外接圆半径),有三种变形:(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA=2aR,sinB=2bR,sinC=2cR;(3)a∶b∶c=sinA∶sinB∶sinC.利用这些公…  相似文献   

20.
(一)国中线段比例式(或等积式)的证明,是一类综合性较强的几何证明题.证明这类问题,要综合应用相似形和圆的有关知识和方法.它能有效地考查学生综合应用所学知识和方法解决问题的能力.因此,它是全国各省市中考命题的又一个热点.同学们在中考复习中一定要加强这方面的训练,牢固掌握圆中线段比例式(或等积式)的证题思路和证题方法.证明圆中的线段比例式(或等积式)的基本思路有:1.利用相似三角形的性质给出证明;2.利用国幂定理(即相交弦定理、切割线定理和割线定理)给出证明;3.利用平行线分线段成比例定理给出证明.…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号