首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of vitamin C in treating Cr(Ⅵ)-contaminated water is being evaluated. Cr(Ⅵ) is an identified pollutant of some soils and groundwater. Vitamin C, an important biological reductant in humans and animals, can be used to transform Cr(Ⅵ) to essentially nontoxic Cr(Ⅲ). The removal efficiency was 89% when the mass concentration of vitamin C was 80 mg/L in 60 min, and nearly 100% Cr(Ⅵ) was removed when the mass concentration was 100 mg/L. Our data demonstrated that the removal efficiency was affected by vitamin C concentration, the reaction temperature and the dissolved oxygen concentration.The reaction mechanism of Cr(Ⅵ) by vitamin C was presented. Our study opens the way to use vitamin C to remediate Cr(Ⅵ)-contaminated soils and groundwater.  相似文献   

2.
Removal of hexavalent chromium from aqueous solution by iron nanoparticles   总被引:1,自引:0,他引:1  
Groundwater remediation by nanoparticles has收稿日期increasing interest in recent years. This report presents a thorough evaluation of hexavalent chromium removal in aqueous solutions using iron (Fe0) nanoparticles. Cr(Ⅵ) is a major pollutant of groundwater. Zero-valent iron, an important natural reductant of Cr(Ⅵ), is an option in the remediation of contaminated sites, transforming Cr(Ⅵ) to essentially nontoxic Cr(Ⅲ). At a dose of 0.4 g/L, 100% of Cr(Ⅵ) (20 mg/L) was degraded. The Cr(Ⅵ) removal efficiency decreased significantly with increasing initial pH. Different Fe0 type was compared in the same conditions. The reactivity was in the order starch-stabilized Fe0 nanoparticles>Fe0 nanoparticles>Fe0 powder>Fe0 filings. Electrochemical analysis of the reaction process led to the conclusion that Cr(OH)3 should be the final product of Cr(Ⅵ). Iron nanoparticles are good choice for the remediation of heavy metals in groundwater.  相似文献   

3.
采用柚子皮制备生物吸附剂用于去除水中的Cr(VI),考察了p H值、柚子皮投加量、柚子皮粒径、溶液离子强度、反应温度等因素对吸附效果的影响。结果表明,当溶液中Cr(VI)离子初始浓度15mg/L、p H 1.5、反应温度25℃、柚子皮投加量1.0g/100 m L、吸附时间7 h时,Cr(VI)离子去除率可达90%以上。柚子皮对Cr(VI)离子的吸附过程可以用Langmuir和Freundlich吸附等温模型来描述,吸附等温线线性相关性均较显著,吸附过程符合准二级动力学方程。柚子皮对水中Cr(VI)离子吸附性能较好,且运行成本低,可推广应用于水中重金属离子的治理。  相似文献   

4.
研究了稻壳制备生物质碳对水中六价铬的吸附特性.探讨了稻壳生物质炭粒径、投加量、溶液pH值、铬(Ⅵ)初始浓度、反应温度和吸附时间对去除效率的影响.结果表明在20mL 0.20mg/L铬(Ⅵ)溶液中,稻壳生物质炭投加量为0.10g、温度为40℃、pH为2、反应时间60min时,稻壳生物质炭对水中六价铬的吸附容量最高,可达8.90mg/g.稻壳生物质炭对铬(Ⅵ)的吸附符合Freundlich吸附等温式,该吸附过程符合二级动力学方程.  相似文献   

5.
Removal of chromium (VI) dissolved in water by intermittent foam separation was implemented with cetyl trimethy-ammonium bromide as surfactant. The influence of various factors on removal efficiency was systematically studied. The removal efficiency has a maximum value near pH 4.0; thus, most experiments were carried out at pH 4.0. The orthogonal experiment was conducted to confirm the optimal operating parameters. The orthogonal experimental results show that when the liquid feed concentration is 10 mg/L, the pH value of feed solution is 4.00, air flow rates 0.9 L/min, surfactant dosage is 300 mg/L, the maximum removal efficiency of chromium (VI) reaches 97.80%, and condense multiple reaches 1 711. The kinetic test indicates that the foam separation of chromium is a first-order process. The equivalent rate constant calculated from the slope is 0.406 4, and the equivalent rate equation is obtained.  相似文献   

6.
Zeng  Qingyou  Jia  Shaoyi  Gong  Yufeng  Wu  Songhai  Han  Xu 《天津大学学报(英文版)》2019,25(6):567-575

Cr(VI) and phenol are toxic contaminants that need to be treated, and different methods have been researched to simultaneously remove these two contaminants from industrial wastewater. In this study, Cr(VI) was used as a novel Fenton-like catalyst in phenol degradation by H2O2. In the pH range of 3.0‒11.0, the degradation efficiency of phenol decreased with elevated pH. At pH = 3.0, 100 mg/L phenol was effectively degraded by 2 mmol/L Cr(VI) and 20 mmol/L H2O2. At pH = 7.0 and the same conditions as those of pH = 3.0, 79% of 100 mg/L phenol was removed within 6 h, which was an improvement in pH limitation compared with the Fe(II)-mediated Fenton reaction. Quenching experiments indicated that ·OH generated from the catalysis of H2O2 by Cr(V) instead of Cr(VI) was the primary oxidant that degraded phenol. When pyrophosphate was added in the Cr(VI)/H2O2 system, complexes with the Cr(V) intermediate rapidly formed and inhibited H2O2 decomposition, implying that the decomposition of H2O2 to ·OH was catalyzed by Cr(V) instead of Cr(VI). The presence of anions such as chloride and sulfate had insignificant effect on the degradation of phenol. TOC and UV analyses suggest that phenol could not be completely oxidized to CO2 and H2O, and the intermediates identified by high performance liquid chromatography further indicates that maleic acid and benzoquinone were intermediates which may be further degraded into short chain acids, primarily maleic, formic, acetic, and oxalic acids, and eventually into CO2 and H2O. Considering that more than 50% Cr(VI) can also be removed during this process, the Cr(VI)/H2O2 system is more appropriate for the simultaneous removal of Cr(VI) and phenol contaminants from industrial wastewater.

  相似文献   

7.
1 Introduction Aqueouseffluentsdischargingfromminingandoth erindustriescontainheavymetalssuchaslead ,cad miumandchromiumindissolvedand particulateforms[1] .Theimpactofuntreatedindustrialeffluentsontheaqueousenvironmenthasbeenextensivelystudied[2 ] .Conventio…  相似文献   

8.
利用低温炭化法来制备柚子皮活性炭吸附剂。探讨了吸附剂用量、温度、pH值、Cr(Ⅵ)初始浓度、吸附时间等对吸附效果的影响。柚子皮吸附剂吸附处理Cr(Ⅵ)的最佳工艺条件是:吸附剂用量10g/L,温度40℃,pH=4,吸附时间10h,Cr(Ⅵ)初始浓度为100mg/L时,Cr(Ⅵ)的去除率能达到98%以上。柚子皮吸附剂对Cr(Ⅵ)具有良好的吸附能力,吸附过程符合二级吸附动力学模型并且可用Langmuir吸附等温线来描述。  相似文献   

9.
Study on anaerobic treatment of wastewater containing hexavalent chromium   总被引:6,自引:0,他引:6  
A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr^6 concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr^6 concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr^6 concentration reached 95.47 rag/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr^6 removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.  相似文献   

10.
实验室含铬废液处理方法的对比研究   总被引:2,自引:0,他引:2  
实验室含铬废液不能直接排放,必须进行回收处理。采用化学还原法处理含Cr(VI)废液,对比研究了以亚硫酸钠、亚硫酸氢钠、抗坏血酸、硫酸亚铁为还原剂还原Cr(VI)的酸度条件、还原剂用量、反应时间等影响因素.结果表明:在最佳参件下,四种还原剂处理含Cr(VI)废液的去除率都在99.9%以上,处理后出水的Cr(VD浓度分别为0.048mg·L^-1、0.018mg·L^-1,0.038mg·L^-1,0.018mg·L^-1,均小于0.5mg·L^-1,达到了国家排放标准,取得了良好的处理效果。综合分析Cr(VI)~除率和经济效益得出亚硫酸氢钠为最佳还原剂。  相似文献   

11.
以木麻黄叶状枝粉末作为生物吸附剂,研究其对重金属离子Cr(Ⅵ)的吸附性能和吸附规律,并探讨了溶液酸度、振荡时间、溶液初始浓度、吸附剂用量等因素的影响.结果表明,在吸附剂用量为0.3g、pH值为1、Cr(Ⅵ)初始浓度小于100mg/L、吸附时间为90min的条件下,相应的吸附容量和吸附率可达3.98mg/g和99.9%,残余的Cr(Ⅵ)浓度小于0.5mg/L,达国家工业废水排放标准GB18918-2002;正交实验结果表明,影响木麻黄吸附剂对Cr(Ⅵ)吸附效果的主次因素顺序为pH值〉吸附振荡时间〉吸附剂用量〉吸附液浓度.  相似文献   

12.
Some laboratory diffusion tests were conducted with diffusion device to determine the diffusion coefficient of Cr(Ⅵ) ion passing through Dalian red clay samples. The concentrations of Cr(Ⅵ) at different places of the samples were then measured spectrophotometrically after a standing time of 1 000 d. A one-dimensional solute transport equation was used to simulate the transport of Cr(Ⅵ) through clay samples. Back-calculation of diffusion coefficient of Cr(Ⅵ) was made with finite difference method. Parametric analysis was conducted to simulate variations in soil dry density, temperature, pH and standing time. The results show that the method used in this paper is simple and effective. The diffusion coefficient of Cr(Ⅵ) in Dalian red clay varies from 1.50×10-7 cm2/s to 2.08×10-7 cm2/s. After 1 000 d diffusion, the concentration of the source solution drops down to 1.27 mg/L from 62.5 mg/L, and the diffusion distance is only 3.5 cm. Under the assumption that diffusion coefficient is constant, the diffusion effect becomes more obvious with lower density, lower temperature, higher pH value, and much more time.  相似文献   

13.
利用硫氰酸铵对螺旋藻进行改性制备新型吸附剂吸附Cr6+研究。结果显示:硫氰酸铵同一氯乙酸的质量比为1:0.6,藻类投加量为0.8g,初始pH为0,改性时间为2h,改性温度为60℃时,改性后螺旋藻对六价铬的吸附效果最好。并对原藻和改性后的藻吸附能力进行对比研究。结果显示:对于100mL的Cr6+溶液浓度为14mg/L的溶液,硫氰酸铵改性后的藻吸附六价铬效果最好。  相似文献   

14.
Azo dyes discharged in the environment are persistent organic pollutants (POPs), which are very difficult to remove. We developed a microwave-assisted Fenton-like process to degrade methyl orange (MO), an azo dye, with hydrogen peroxide (H2O2) catalyzed by chromium compounds coexisting with MO in the solution. Comparison between the Cr(Ⅲ)-H2O2 and Cr(Ⅵ)-H2O2 systems shows" that Cr(Ⅵ) has a stronger and more stable catalytical activity than Cr(Ⅲ), and Cr(Ⅲ) is more susceptible to a change in the acidity or alkalinity of the reaction system. With a Cr(Ⅵ) concentration of 10 mmol L^-1 or a Cr(Ⅲ) concentration of 12 mmol L^-1 in the solution under the microwave irradiation of a power larger than 300 W for 3 min, 10 mmol L^-1 H2O2 can degrade more than 95% of 1 000 mg L^-1 methyl orange; when the microwave power is increased to 700 W, the same amount of H2O2 can degrade all methyl orange in the solution with the same amount of Cr(Ⅵ ) catalyst. Ultraviolet-visible spectrography indicates the cleavage of the azo bond in methyl orange after treatment, suggesting the potential o of this Fenton-like process to degrade azo dye POPs. Reusing waste chromium compounds coexisting with dyestuff in wastewater to catalyze the degradation of azo dyes could be a cost-effective technique for azo dyes and chromate manufacturers and/or users to treat their wastewater and prevent POPs from endangering the environment. This is of particula importance to controlling the water quality of the Three Gorges Reservoir.  相似文献   

15.
以具有良好吸附性能的有机膨润土作为载体制备有机改性膨润土负载羟基氧化铁,并用制备的复合吸附剂对含铬(VI)废水进行吸附实验。结果表明,改性膨润土的质量分数为3%时,Cr(Ⅵ)废水去除效果较好。当复合吸附剂的投加量为1.0g,温度为25℃,振荡时间为4h时,对含10mg/L的Cr(Ⅵ)废水去除率达98.37%。  相似文献   

16.
Hydroponic experiments conducted to examine the chromiun uptake by C. communis in the presence of different Cr concentrations (Cr6+ 100 and 200 mg/L, respectively) and free histidine supplementation (0.5 and 1.0 mol/L) showed that shoot and root growth of C. communis decreased greatly with increasing Cr concentrations in the medium; and that the species was a typical excluder since it accumulated high concentrations of Cr in roots but comparatively low concentrations in shoots. Chromium in shoots and roots of Cr24 -supplied plants ranged from 329-1880 and 3788-4240 mg/kg DW, respectively, while those of Cr24 -histidine-supplied plants ranged from 478 to 629 mg/kg and 4157-4303 mg/kg DW, respectively. With Cr present in the hydroponic solution, C. communis accumulated more Cr in its tissues. Increasing histidine application to the solution significantly increased chromium accumulation in the plant tissues but could not alter the accumulation pattern of plants although it induced a higher concentration of Cr in its shoots and roots. These features suggested that C. communis may serve as an alternative species in a constructed wetland for phytoextraction treatment of Cr-containing wastewater and for phytostabilization of Cr mining spoils.  相似文献   

17.
对乙酰基偶氮羧光度法测定痕量铬的研究   总被引:1,自引:0,他引:1  
研究了对乙酰基偶氮羧与Cr_2O_7~(2-)的褪色反应,建立了一种新的测定痕量Cr(Ⅵ)的光度方法,发现其在高氯酸介质中具有高灵敏的褪色反应,摩尔吸光系数达到3.0×10~6 L·mol~(-1)·cm~(-1)Cr(Ⅵ),量在0~50μg范围内符合比耳定律.  相似文献   

18.
采用离子色谱电导检测法测定皮革制品中Cr(Ⅳ),选用Metrohm86I型离子色谱仪,Metrosep A Supp5—150型阴离子分析柱,12.8mmol/LNa2C03+4.0mmol/LNaHC03淋洗液.在10~100μg/L范围内,Cr(Ⅳ)的浓度与色谱峰面积呈线性关系,线性方程为C×100—2893.72×A+200.136,相关系数为0.9990,最低检测浓度为4μg/L,低、中、高三个浓度的精密度分别为1.60%、1.05%、0.65%,样品加标回收率分别为91.5%、93.6%和92.3%,本方法可用于皮革中Cr(Ⅵ)的测定.  相似文献   

19.
Removal of chromium (Ⅵ) dissolved in water by intermittent foam separation was implemented with cetyl trimethy-ammonium bromide as surfactant. The influence of various factors on removal efficiency was systematically studied. The removal efficiency has a maximum value near pH 4.0; thus, most experiments were carried out at pH 4.0. The orthogonal experiment was conducted to confirm the optimal operating parameters. The orthogonal experimental results show that when the liquid feed concentration is 10 mg/L, the pH value of feed solution is 4.00, air flow rates 0.9 L/min, surfactant dosage is 300 mg/L, the maximum removal efficiency of chromium (Ⅵ) reaches 97.80%, and condense multiple reaches 1711. The kinetic test indicates that the foam separation of chromium is a first-order process. The equivalent rate constant calculated from the slope is 0.406 4, and the equivalent rate equation is obtained.  相似文献   

20.
The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respectively. The volumetrical volumetric loading rates (LRs) observed through decreasing hydraulic retention time (HRT) at fixed substrate concentration are higher than those by increasing substrate concentration at fixed HRT. The sulfide oxidation in ASO reactor was partially producing both sulfate and sulfur; but the amount of sulfate produced was approximately one third that of sulfur. The process was able to tolerate high sulfide concentration, as the sulfide removal percentage always remained near 99% when influent concentration was up to 580 mg/L. It tolerated relatively lower nitrate concentration because the removal percentage dropped to 85% when influent con- centration was increased above 110 mg/L. The process can tolerate shorter HRT but careful operation is needed. Nitrate conversion was more sensitive to HRT than sulfide conversion since the process performance deteriorated abruptly when HRT was decreased from 3.12 h to 2.88 h. In order to avoid nitrite accumulation in the reactor, the influent sulfide and nitrate concentrations should be kept at 280 mg/L and 67.5 mg/L respectively. Present biotechnology is useful for removing sulfides from sewers and crude oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号