首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不少文章都对焦点弦的有关性质的研究以及如何进行探究性学习进行了精彩的阐述,令人深有感触.本文试从命题的角度对此进行进一步的挖掘和探究.不妨设抛物线y2=2px(p>0),则焦点Fp2,0,准线l的方程:x=-p2.直线l1交抛物线于A(x1,y1)、B(x2,y2)两点,交x轴于点C(c,0),又作AA1⊥l,BB1⊥l,垂足分别为A1、B1(如图1所示).探究1若直线l1过焦点F,则y1y2=-p2(定值).那么其逆命题是否成立呢?分析:当l1⊥x轴时,命题显然成立.当l1与x轴不垂直时,设直线l1的方程为x=my+n,联立方程组y2=2px,x=my+n,消去x得y2-2pmy-2pn=0,∴y1y2=-2pn,∵y1y2=-p2,∴n=p2,∴…  相似文献   

2.
题如图1,过抛物线y2=2px(p>0)焦点F的一条直线和抛物线相交,交点的纵坐标为y1、y2.求证y1y2=-p2.证法1由已知,抛物线焦点F(2p,0),设过点F的直线与抛物线交于点A(x1,y1),B(x2,y2).若AB⊥x轴,则y1=p,y2=-p.所以y1y2=-p2.若AB与x轴不垂直,设直线AB的方程为y=k(x-2p),与y2=2px联立,得y2-2kpy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.证法2因直线AB过定点F且与x轴不平行,所以设直线AB的方程为x=my 2p.代入y2=2px得y2-2pmy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.法1是常规解法,法2设出直线方程,避免了讨论直线斜率的存在性,是一种很…  相似文献   

3.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

4.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

5.
本文首先给出抛物线中的几组“定”结论,并举例说明它们在求解抛物线有关问题时的应用. 结论1 过抛物线y2=2px(p >0)的焦点F的直线l交抛物线于A(x1,y1)、B(x2,y2)两点,设|FA|=m,|FB|=n,O为原点,则有:(1)x1x2=p2/4;(2)y1y2=-p2;(3)kOAkOB=-4; (4)1/m+1/n=2/p.证明略.  相似文献   

6.
高中数学教材(试验修订本.必修)第119页有这样一道习题: 过抛物线y2=2px(p>0)的焦点的一条直线和此抛物线相交,两个交点的坐标为(x1,y1)和(x2,y2),求证:x1x2=p2/4,y1y2=-p2.  相似文献   

7.
1.问题呈现已知抛物线y^2=2px(p>0),过焦点F的一条直线l交抛物线于A、B两点,原点为O.求cos∠AOB的取值范围.这个问题是我在学习的过程中的一个思考,经过研究得出以下解法:解:设A(x1,y1),B(x2,y2),易知y1^2=2px1,y2^2=2px2.  相似文献   

8.
性质:过抛物线y2=2px的焦点的一条直线和抛物线相交,两个交点的纵坐标分别为y1、y2,则y1y2=-p2.证明:由题意知,直线若为x轴时,与题意不符.(1)当过焦点的直线不垂直于x轴时,设方程为y=k(x-p/2)(k≠0),即x=  相似文献   

9.
课本习题一般是编者为了让同学们对新知识得到进一步的巩固而编拟的,具有一定的代表性、典型性.因而在学习中,我们要善于研究它们,发挥课本习题的价值.注意一题多解,比较方法;一题多样,推而广之;一题多改,突而破之.新教材苏教版选修2-1中第47页的第8题是下面的原问题.图1原问题如图1,直线y=x-2与抛物线y2=2x相交于A,B两点,O是坐标原点,求证:OA⊥OB.分析此问题涉及到抛物线的弦对其顶点张角的问题,学生多数用纯解析几何知识来解的.也可以用平面向量的知识来解决题.1问题的另解证明设A(x1,y1),B(x2,y2),将y=x-2代入y2=2x,得x2-6x+4=0.由韦达定理得x1+x2=6,x1x2=4,y1y2=(x2-2)(x2-2)=x1x2-2(x1+x2)+4=-4.OA=(x1,y1),OB=(x2,y2)则OA·OB==x1x2+y1y2=0,OA⊥OB,即OA⊥OB.2问题的推广原问题中,直线AB与x轴的交点(2,0)的横坐标恰好是抛物线的参数p的两倍,将其推广为一般.变题1若直线l过定点(2p,0)且与抛物线y2=2px(p>0)交于两点,求证:OA⊥OB.证明设A(x1,y1),B...  相似文献   

10.
<正>试题已知抛物线C:x2=-2py经过点(2,-1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M、N,直线y=-1分别交直线OM、ON于点A、B,求证:以AB为直径的圆经过y轴上的两个定点.这是2019年北京卷理科第18题,我们首先给出试题的一种新解法.解答 (Ⅰ) 由抛物线C:x2=-2py经过点(2,-1),则4=2p,所以抛物线C的方程为x2=-4y  相似文献   

11.
文 [1 ]中给出下面一道问题 :不垂直 x轴的直线与抛物线 y2 =2 px (p>0 )交于 A、B两点 (A、B不在同一象限 ) ,抛物线的准线与 x轴交于 N ,已知∠ AN B被 x轴平分 ,求证 :线段 AB经过抛物线的焦点 F.该文用方程法进行了证明 .文 [2 ]从抛物线的定义出发 ,利用平面几何的知识给出了一种较为简单的证明方法 ,并将结论推广到其他圆锥曲线中 .实际上该问题有多种证法 ,为此笔者作进一步的探究 ,供同行参考 .1 命题的证明1 .1 向量法如图 1 ,N的坐标为 (-p2 ,0 ) ,设 A、B两点的坐标分别为 (y212 p,y1) ,(y222 p,y2 ) ,(| y1|≠| y2 | )…  相似文献   

12.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

13.
正北京市丰台区2013~2014学年度第一学期期末练习高二数学(理科)第19题(满分13分)即倒数第二题是:统考题已知抛物线C:y2=2px(p0),过抛物线C的焦点F的直线l交抛物线于A、B两点.(1)若抛物线的准线为x=-1,直线l的斜率为1,求线段AB的长;(2)过B作x轴的平行线交抛物线的准线于点D,求证:  相似文献   

14.
题:设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线AC经过原点O.证明:如图1,记x轴与抛物线准线l的交点为E,过A作AD⊥l,D是垂足,则  相似文献   

15.
1.对抛物线y2=2px(p>0),AB为过其焦点的弦,A(x1,Y1),B(x2,y2),则有:|AB|=x1+x3+p. 证明:抛物线的焦点为F(p/2,0),准线方程是l:x=-p/2.过A、B分别作AA'、BB'垂直于l,垂足为A'、B'.由定义可知  相似文献   

16.
经过对抛物线上存在轴对称点的条件的探究,获得了下面的结果.定理1:设抛物线E:x2=2py(p>0)和直线l:y=kx b,当且仅当2k22 1相似文献   

17.
命题:已知直线l与抛物线 C:y~2=2px,过C的焦点F且垂直于l的直线交l于点N,则(1)l与C相切(?)点N在y轴上;(2)l与C相交(?)点N在y轴右侧;(3)l与C相离(?)点N在y轴左侧.证明:设直线 l:Ax By C=0,(A、B不全为零).  相似文献   

18.
中学数学课本《解析几何》总复习第8题“求抛物线y=x2上到直线2x-y=4距离最小的点的坐标,并求出这个距离。”对此题的解法,很多书上都直接采用了结论:“当直线不与抛物线相交时,抛物线上到已知直线距离最短的点是与已知直线平行的抛物线切线的切点。”对此,不少学生提出疑问。本文加以证明并推广到其它二次曲线。Ⅰ.首先对抛物线进行证明。设抛物线方程为y2=2px(p>0),直线l:y=kx+b,直线与抛物线不相交。求证:抛物线上到已知直线l距离最短的点是与l平行的抛物线的切点。证明:设M(x0,y0)是抛物线上任一点的坐标,它到直线l的距离…  相似文献   

19.
众所周知,设直线l与抛物线y2=2px(p>0)相交于A(x1,y1)、B(x2,y2)两点,若l经过抛物线的焦点F,则y1·y2=-p2,反之也成立.那么,若y1·y2=p2,直线l也经过某一定点吗?著名的数学教育权威弗赖登塔尔认为,数学教学方法的核心是学生的“再创造”.在具体实施过程中必须努力激发学生“再创造”的动机,必须以学生的“数学现实”为基础,必须重视合情推理的作用.基于这一教学理念,在2004年安徽省六安市高中数学研讨课的一节公开课“抛物线y2=2px(p>0)的焦点弦性质”的教学中,通过师生互动,发现了一个新的结论.为说明问题,先将本节课的主要教学环节简介…  相似文献   

20.
2006年福建省高三质检理科卷21题:如图,F是抛物线y2=4x的焦点,Q是准线与x轴的交点,直线l经过点Q.(1)直线l与抛物线有唯一公共点,求l的方程;(2)直线l与抛物线交于A、B两点.(I)记FA、FB的斜率分别为k1、k2,求k1+k2的值;(II)若点R在线段AB上,且满足AR AQRB=QB,求点R的轨迹方程.本题在(2)(I)中求k1+k2的值,其值恰好为0,这个结论在一般情况下能否成立?是否可以延伸?直线AB、FA、FB的斜率之间是否存在某种特定关系?本文结合巧妙的化“1”证法探究如下:A O x R y Q F B性质1设抛物线y2=2px(p>0)的焦点为F,相应于焦点F的准线与x轴交…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号