首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
本文证明了长方四元数矩阵奇异值的一些不等式:设H为四元数体,A∈H~(n×m),B∈H~(m×k),S=min{n,k},1≤l≤s,则 sum from i=1 to l σ_i(AB)≤sum from i=1 to l σ_i(A)σ_i(B) (ⅰ) sum from i=1 to l σ_s _(i+1)(AB)≥sum from i+j=m+s-l+1 σ_i(A)σ_j(B) (ⅱ) multiply from i=1 to l σ_i(A)σ_(m-i+1) (B)≤multiply from i=1 to l σ_i(AB)≤multiply from i=1 to l σ_i(A)σ_i(B) (ⅲ) 其中,σ_1(A)≥σ_2(A)≥…≥σ_m(A)≥0是A的从大到小的奇异值,当i>m时,σ_1(A)(?)0。不等式(ⅰ),(ⅱ),(ⅲ)包含或加强了文[3]、[4]、[5]的一些基本结果。  相似文献   

2.
线性方程组,sum from j=1 to n(a_1,x_1=b_1(i=1,2,…m))有解判别定理(即克朗南格定理)是线性方程理论中的一个基本定理。本文主要给出了此定理充分性的一个证法。设,线性方程组:sum from j=1 to n(a_1,x_1=b_1)(i=1,2,…m)…(1)记定理,(Kronecker)线性方程组(1)有解的充要条件是其系数矩阵A的秩r_A  相似文献   

3.
设{x},n=1,2,…,是线性过程,即对每一n,X_n=sum from j=0 to ∞ (g_j)Y_(n~-),这里{Y_j},j=0,±1,±2,…,是独立同分布随机变量列,已知在假设sum from j=0 to ∞(g_j)~2<∞下线性过程{X_n},n=1,2,…,满足中心极限定理,[1]在假设EY_0=0,EY0~2=1,sum from j=0 to ∞|g_j|=M_1<∞,|sum from j=0 to ∞(g_j|=M_2>0(Ⅰ)  相似文献   

4.
Wielandt-Hoffman定理的推广   总被引:1,自引:0,他引:1  
本文推广了Wielandt-Hoffman定理,得到了如下的结果:设A,B,C均为n×n Hermite矩阵,它们的特征根(从大到小依次排列)分别为α_iβ_iγ_i,(i=1,2,…,n),(i)若B=C-A,则sum i=1 to n (β_i~2)≥sum i=1 to n(γ_i-α_i)~2;(ii)若B=C+A,则sum i=1 to n (β_i~2)≤sum i=1 to n (γ_i+α_i)~2。  相似文献   

5.
<正> 我们知道,变分制考试核分和分析试题的难度,要进行大量计算工作,比较费时、费力。如果利用计算机进行统计,只需一次输入考生在每个试题所获得分数a_(ij)即可(i=1,2,…,k;j=1,2,…,n,其中,k表示试题总数,n表示考生总数,i表示题号,j表示考号)。例如,a_(23)表示3号考生在第2题所获的得分点数;a_(ij)就表示j号考生在第i题所获得的分点数。用N_i(i=1,2,…,k)表示每道题所设的得分点数,那么,j号考生在本次考试的成绩就是(sum from i=1 to k a_(ij)/sum form i=1 to k N_i)·d(j=1,2,…,n),d是分制的取值。用p_i,(i=1,2,…k)表示第i道题的难度值,那么,p_i=1-(sum from j=1 to n a_(ij)/n·N_i),(i=1,2,…,k)。例如,某次考试共设10道题,每题所设得分点数分别是5,5,8,10,12,15,18,20,20,25,仅以前6位考生为例,他们的得分点数是:  相似文献   

6.
本文给出第2类Stirling数,Bernoulli数与Euler数的解析表示式: s_2(m+1,n)=(-1)~n/n1 sum form j=1 to n(-1)~j(?)_j~(-m+1) B_n=sum form k=1 to n 1/(k+1) sum form j=1 to k (-1)~j(?)_j~(-n) E_(2n) =1/(2n+1)[sum from p=0 to n-1 sum from k=1 to 2(n-p) sum from j=1 to k (-1)~(j-1)/(k+1)·(?)(?)(4j)~2(n-p)+4n+1]因此解决了它们的计算问题。  相似文献   

7.
如果不等式是一个n元对称式,那么应用逐步调整法来证明有时显得较方便。下面通过两个例子的分析来说明这方法的意义。例1 已知a_1,a_2,…,a_k,…为两两各不相同的正整数,求证:对任何正整数n,下列不等式成立: sum from k=1 to n (a_k/k~2)≥sum from k=1 to n (1/k). (第二十届国际数学竞赛试题第5题) 证:(1) 如果已知数列恰好满足条件: a_1相似文献   

8.
设n是正整数,bk(n)表示n的k次根部分.利用初等和解析方法研究了级数sum from ∞ to n=1 1/(a3s(n))(n)和sum from ∞ to n=1 1/(bks(n))的收敛性以及sum from to n=≤x a3k(n)和sum from to n=≤x bkt(n)的均值性质,并给出渐近公式.  相似文献   

9.
本文推广了文献[1]、[3]给出的不等式,得到以下结果:(1)设Ai(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,p 1n,则|A1+…+Ak|p |A1|+…+|Ak|p;(2)设Ai,Bi,…,Ci(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,α,β…,r都是正实数,且α+β+…+r 1Ai|α·|Ai|α·|Bi|β…|Ci|r |∑kn,则∑ki=1i=1Bi|β…|∑kCi|r.|∑ki=1i=1  相似文献   

10.
文[1]推广了Bellman.R获得的正定矩阵A、B的迹的不等式:2tr(AB)≤tr(A~2)+tr(B~2)(*);tr(AB)≤[tr(A~2)]~(1╱2)·[tr(B~2)]~(1╱2)(**)。本文在两两相乘可交换的条件下给出更一般的不等式:tr(multiply from i=1 to m (A_i~(ai))≤sum from i=1 to m (a_i)·tr(A_i)(a_i〉0,sum from i=1 to m (a_i)=1);sum from 1-i to m(-tr) multiply from j=1 to k(A_(i-j))≤multiply from j=1 to k[sum from i=1 to m (tr(A_i~(β_i)]~(β~1)(β〉0,sum from j=1 to k(β=1))。  相似文献   

11.
在四元数体Ω上引入了自反向量、自反矩阵和广义自反矩阵等概念,利用广义自反矩阵和广义反自反矩阵的性质讨论了线性方程组AX=6、矩阵方程AX=B及AXB=C的最小二乘解问题:当A为广义自反矩阵或广义反自反矩阵时,可将线性方程组AX=6的最小二乘解问题化为两个较小独立的子问题去讨论;当A、B都是广义自反矩阵或广义反自反矩阵时,可将矩阵方程AX=B的最小二乘解问题化为线性方程组的最小二乘解问题去讨论。  相似文献   

12.
讨论由数域F上的一个n阶方阵A所决定的线性变换DA:Mn(F)→Mn(F),X→AX—XA的不动点。主要结果如下:(1)由DA的全体不动点组成的集合构成矩阵空间Mn(F)的一个子空间,并且这个子空间中的每一个矩阵都是幂零矩阵;(2)如果A是可对角化矩阵,那么由DA的不动点组成的子空间,其维数不超过ψ(n),这里n≥2,并且当n为奇数时,ψ(n)=1/4(n^2—1),当n为偶数时,ψ(n)=1/4n^2;(3)如果m=p1q1+p2q2+…+psqs且p1+q1+p2+q2+…十ps+qs≤n,那么存在一个一个n阶方阵A,使得由DA的不动点组成的子空间,其维数等于m,这里p1,q1,p2,q2,…ps,qs都是正整数;(4)如果DA是矩阵空间Mn(C)上的线性变换,那么DA有非零不动点当且仅当存在A的两个特征值,其差等于1。这里n≥2,并且C表示复数域。  相似文献   

13.
本文给出了一种求复常系数线性齐次微分方程组: X~′=(A+iB)X (1)的标准基解矩阵的方法,得到了方程组(1)的通解公式。这里A,B均为n阶实常数矩阵。  相似文献   

14.
本文主要研究可表示成高斯整数矩阵的平方和的高斯整数矩阵能表示高斯整数矩阵的平方和的个数,得出了  相似文献   

15.
对于任意给定的矩阵A∈Rm×n,B∈Rn×s,C∈Rm×k,D∈Rk×s,E∈Rm×s,利用矩阵的拉直算子、Krone-cker积和Moore-Penrose广义逆的有关知识给出了矩阵方程AXB+CYD=E的Hankel矩阵解的表达式.  相似文献   

16.
众所周知,每一非奇异矩阵A有唯一的逆矩阵,通常记为A~(-1),并且,若A~(-1)=B~(-1),则A=B。类似地,设An{i、j、…、k)是已知矩阵A_n的一个广义逆类(n=1、2),并且若A_1{i,j、…、k}=A_2{i、j、…、k}(i、j、…,k∈{1、2、3、4、5})。那么,A_1=A_2吗? 在这篇文章中,我们解决上述这些问题。  相似文献   

17.
Banach空间中线性算子分块矩阵的广义Drazin逆不仅在矩阵理论中有着重要应用,而且在控制论、系统论和微分方程等方面也有着重要应用。因此,给出了线性算子分块矩阵x = a bc d ∈A(其中A为B代数)的广义舒尔补s =d -cad b是广义Drazin逆条件下此分块矩阵的广义Drazin逆的几种新特性,这些特性是广义舒尔补Drazin逆、广义舒尔补群逆和广义舒尔补为零情形下的推广形式。  相似文献   

18.
<正> 变系数动力系统运动稳定性是现代化生产中急待解决的一个课题,我国有不少学者正从事于这一课题的研究〔1—4〕,美国Lefschetz动力研究中心仍然把变系数线性系统的运动稳定性作为重要的研究项目之一。文〔3〕利用分解理论研究了缓变系统与子系统呈对称型的大系统的稳定性。本文放宽了对子系统为对称及缓变的要求,沿用分解理论研究了一类仿拟反对称系统平凡解的稳定性。  相似文献   

19.
本文证明了下列结论:1.m×n矩阵A与B酉相抵的充分必要条件是tr((AA)~(*K))=tr((B B~*)~K), K=1,2,…,”,m2.m阶方阵A与B有相同奇异值的充分必要条件是tr((AA~*)~K)=tr((B B~*)~K),K=1,2,…,m。  相似文献   

20.
讨论与对合矩阵可交换的反对合矩阵。主。要结果如下:(1)给出了与n阶对合矩阵可交换的反对合矩阵的一种表示;(2)对于2阶对合矩阵A,如果A≠±I(I是单位矩阵)。那么与A可交换的反对合矩阵一共有4个,它们是±玎和±进;(3)对于3阶对合矩阵A,如果A≠±I,那么与A可交换的全体反对合矩阵为±iI和±iA,以及±[iik-i]p^-1,±P[-iik-i]P^-1,±P[ikl1+k^2/l-k]P^-1,P[-ikl-1+k^2/l-k]P^-1其中k是任意复数,l是任意非零复数;当廿(A)=-1时,P是A与diag{1,-1,-1,这一对相似矩阵之间的相似因子;当tr(A)=1时,P是A与diag{-1,1,1}之间的相似因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号