首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
研究了恒低温养护(养护温度5℃、0℃、-5℃)和变温养护两种养护方式对水泥基灌浆料抗压和抗折强度发展的影响。结果表明:恒低温养护方式下,养护温度越低,相同养护龄期时试样的抗压、抗折强度越小。对抗压强度,-5℃养护时明显偏低,28d龄期时抗压强度为0℃养护时的57.49%,为5℃养护时的50.54%;对抗折强度,0℃与-5℃养护温度下试样抗折强度较为接近且明显低于5℃养护时的抗折强度。根据膨胀压理论分析了产生上述试验结果的原因。变温养护方式下,发现试样预养护时间越长,试样的抗压、抗折强度越大。低温环境下,对比恒低温养护与变温养护两种养护方式发现,通过在常温(养护温度20℃)下进行预养护的方式可以提高水泥基灌浆料的早期强度,且预养护时间越长越有利于灌浆料在低温环境下的强度发展。  相似文献   

2.
生态型RPC材料在静态和动态荷载下的力学行为研究   总被引:1,自引:0,他引:1  
以50%~60%的超细工业废渣取代水泥,用天然黄砂取代磨细石英砂,采用超细工业废渣多元复合技术,制备出生态型活性粉末混凝土(ECO-RPC).研究了不同纤维掺量和不同养护龄期对ECO-RPC静态力学性能的影响.采用霍普金森杆方法研究了高速冲击下应变速率对ECO-RPC动态力学性能的影响.结果表明,随着纤维掺量和养护龄期的增加,ECO-RPC各项静态力学性能不断提高.通过超细粉煤灰(25%)、超细矿粉(25%)和硅灰(10%)三掺制备的ECO-RPC性能最佳,其抗压强度、抗折强度和断裂能分别达到200 MPa,60 MPa 和 30 kJ/m2以上.ECO-RPC具有明显的应变率强化效应,随着应变率的提高,峰值应力及峰值应变显著增长,应力应变曲线所包围的面积不断增大,破坏特征从脆性转变为韧性.  相似文献   

3.
基于ANSYS的素土坯墙体抗震性能影响因素分析   总被引:1,自引:0,他引:1  
针对素土土坯墙体的抗侧承载力和变形能力影响因素,采用数理统计理论中的正交试验因素分析方法,对素土坯墙体的静力弹塑性有限元非线性数值模拟计算结果进行了对比分析.研究了素土坯墙体厚度、洞口尺寸和竖向载荷对墙体抗侧承载力和变形能力影响程度.结果表明:未开孔的素土坯墙体,墙体厚度和竖向压应力对墙体的极限位移和极限载荷的提高具有同等重要的程度;开孔的素土坯墙体,墙体厚度、竖向压应力和开孔大小,对墙体的变形能力和抗侧承载力的提高程度相比较,竖向压应力的影响较大.  相似文献   

4.
以硅酸盐和硫铝酸盐复合水泥为基材制作水泥基注浆材料,分别讨论了不同类型、不同掺量的粉煤灰和矿粉对水泥基注浆材料的流动度、容重、膨胀率、抗压抗折强度的影响。结果表明:粉煤灰能有效地增加水泥基注浆料的流动度,当粉煤灰掺量低于20%时,可以提高注浆料的塑性膨胀率,当Ⅰ级粉煤灰掺量为20%或Ⅱ级粉煤灰掺量为15%时,3 h膨胀率最高达1%;粉煤灰对注浆料的早期强度不利,但可以增强其后期强度。矿粉可以改善其流动度,随着矿粉的增加,注浆料的容重和膨胀率均呈下降趋势;矿粉对注浆料的28 d强度无显著影响,其早期强度随着矿粉的增加而下降,当S75矿粉掺量高于7%或S95矿粉掺量高于11%时,抗压抗折强度不满足规范要求。  相似文献   

5.
将直径8的玄武岩纤维增强塑料(BFRP)和玻璃纤维增强塑料(GFRP)筋恒温30 min再冷却至室温,用钢套管固定BFRP和GFRP筋端头并对其进行拉伸力学性能试验。研究BFRP和GFRP筋受拉本构关系、拉伸弹性模量、极限抗拉强度、极限拉应变等力学性能,并拟合温度在20~120℃时BFRP和GFRP筋拉伸力学性能随温度作用后的变化规律。结果表明:随荷载增加到极限荷载65%~80%,BFRP和GFRP筋均发出清脆的声音,其表面纤维丝断裂而导致脆性破坏;随温度增加,BFRP和GFRP筋受拉本构关系呈线性变化;120℃与20℃相比,极限抗拉强度分别降低9.8%和10.6%;BFRP筋极限拉应变减少20.4%,而GFRP筋出现先减后稍增趋势;BFRP筋拉伸弹性模量提高5.4%和13.9%,而GFRP筋呈先增后减现象。  相似文献   

6.
将直径8的玄武岩纤维增强塑料(BFRP)和玻璃纤维增强塑料(GFRP)筋恒温30 min再冷却至室温,用钢套管固定BFRP和GFRP筋端头并对其进行拉伸力学性能试验。研究BFRP和GFRP筋受拉本构关系、拉伸弹性模量、极限抗拉强度、极限拉应变等力学性能,并拟合温度在20~120℃时BFRP和GFRP筋拉伸力学性能随温度作用后的变化规律。结果表明:随荷载增加到极限荷载65%~80%,BFRP和GFRP筋均发出清脆的声音,其表面纤维丝断裂而导致脆性破坏;随温度增加,BFRP和GFRP筋受拉本构关系呈线性变化;120℃与20℃相比,极限抗拉强度分别降低9.8%和10.6%;BFRP筋极限拉应变减少20.4%,而GFRP筋出现先减后稍增趋势;BFRP筋拉伸弹性模量提高5.4%和13.9%,而GFRP筋呈先增后减现象。  相似文献   

7.
《莆田学院学报》2017,(2):46-49
以碱激活镍渣胶凝材料为研究对象,考察了养护龄期及混合碱中氢氧化钾含量对镍渣胶凝材料抗弯强度、抗压强度及微观结构的影响。实验结果表明,镍渣胶凝材料的抗弯强度和抗压强度随养护龄期的延长总体呈增大趋势。混合碱中氢氧化钾含量对镍渣胶凝材料强度的影响较为复杂,在养护龄期较短(小于7d)时,镍渣胶凝材料的抗弯强度和抗压强度均随着氢氧化钾含量的增加而增加;在养护龄期为28d时,抗弯强度随氢氧化钾含量的增加先缓慢增加后小幅降低,而抗压强度则随氢氧化钾含量的减少而明显增大,最大可达23.3MPa。  相似文献   

8.
重塑黄土抗拉特性研究   总被引:1,自引:0,他引:1  
通过单轴拉伸试验,研究重塑黄土的拉伸特性.结果表明:在单轴拉应力作用下重塑黄土的应力应变曲线为应变硬化型,试样的破坏表现为脆性破坏.初始含水率对重塑黄土抗拉强度的影响极其显著,在干密度一定时,抗拉强度随初始含水率的增大呈先增后减的趋势,抗拉强度的最大值并非是土样最优含水量对应的值;干密度对重塑黄土抗拉强度有重要影响,抗拉强度随干密度的增大而增大;试样破坏时的极限拉应变随含水率的增大呈现先减小后增大的变化规律.  相似文献   

9.
一、知识体系 电离度、水的离子积、pH值这三个概念,联系密切,环环相扣,复习时要循序渐进。 复习时,要注意运用电离平衡移动理论,分析外界条件以及溶液酸碱性对α、[H~ ]、pH值的影响。 二、重点与难点 1.pH值的定义 溶液中H~ 浓度的负对数叫做溶液的pH值,即pH=-lg[H~ ]。其内涵: ①pH值的适用范围:(ⅰ)只适用于水溶液。(ⅱ)适用于1摩/升以下的稀溶液,pH值的取值范围为0—14。 ②溶液的pH值表示溶液的酸碱性的强弱,是溶液酸碱度一种表示方法。常温下,pH=7溶液呈中性,pH>7溶液呈碱性,pH<7溶液呈酸性。  相似文献   

10.
以连续互穿聚合物网络(IPN)方法制备魔芋葡甘聚糖(KGM)/聚二甲基二烯丙基氯化铵(PDADMAC)水凝胶.用扫描电镜(SEM)表征形貌,并探讨其在不同浓度和不同pH值的NaCl溶液中的溶胀行为.实验表明KGM/PDADMAC水凝胶具有密集的表面凸凹的IPN分子结构特征;该IPN水凝胶的溶胀率随着NaCl溶液浓度的增加而下降,随pH值增加而缓慢增加,当pH大于8时,则呈下降趋势.  相似文献   

11.
使用电位法,分别用一定浓度的KOH溶液和HCl溶液对水、30%甲醇溶液以及60%甲醇溶液进行滴定,测定溶液的pH值。由于甲醇的介电常数和质子自递常数与水的介电常数和质子自递常数不同,甲醇会对溶液的pH值产生一定的影响,通过研究发现,甲醇浓度越大,影响越明显,当溶液中的酸或碱的量达到一定程度,甲醇产生的影响会稳定在一定的范围,产生的影响基本上是稳定的,在绝对酸度相同情况下,随着溶液中酸或碱的量的增加,不同浓度的甲醇溶液与其偏离对应的水溶液pH值的△pH有减小的趋势。  相似文献   

12.
一 序 言 钢筋和混凝土是由钢材和水泥经过一系列物理工序而形成的两种基本材料。钢筋是一种理想的弹性材料,力学性能主要有:抗拉屈服强度,抗拉极限强度,伸长率,硬度和冲击韧性。这些性能都远远高于混凝土,但由于经济性和适用性的约束,它不可能一揽各种建筑物,尤其是水工建筑物和中等高度的工业与民用建筑。混凝土是一种弹塑性材料,力学性能主要有:抗压强度,抗拉强度,极限压应变,  相似文献   

13.
采用ABAQUS有限元软件对各种强度等级下各龄期钢筋混凝土梁的受扭性能进行分析。各龄期混凝土的本构关系采用塑性损伤模型,受拉指标采用断裂能。有限元分析结果表明:各龄期混凝土的抗扭承载力随龄期的增长而增长,开裂前早龄期混凝土梁的抗扭承载力主要由混凝土承担,钢筋的贡献很小;前3d是混凝土扭矩增长最快的主要时间段,开裂扭矩和极限扭矩达到28 d的60%左右。最后,根据有限元参数分析结果,在现行规范的基础上提出了早龄期混凝土梁开裂扭矩和极限扭矩的修正公式。  相似文献   

14.
目的:水泥基材料的拉伸性能会随着荷载速率的变化而变化。本文旨在探讨加载速率为4×10~(-6)~1×10~(-1) s~(-1)时,超高韧性水泥基复合材料直接拉伸初裂抗拉强度、初裂抗拉应变、弹性模量、极限抗拉应变、极限抗拉强度、多缝开裂特性和耗能能力的变化规律,为超高韧性水泥基复合材料在抗震工程中的应用提供必要的科学依据和参考。创新点:1.通过直接拉伸试验较为全面地测定超高韧性水泥基复合材料在4×10~(-6)~1×10~(-1) s~(-1)应变速率范围内的直接拉伸性能;2.建立适宜的拟合方程,可直观反映多种直接拉伸性能指标随应变率的变化规律。方法:1.通过直接拉伸试验,确定加载速率对超高韧性直接拉伸特性的影响(图2和4);2.通过对实验结果的拟合,简单直观地反映应变率对拉伸弹性模量、初裂抗拉强度和极限抗拉强度的影响规律(图3、5和7)。结论:基于超高韧性水泥基复合材料薄板直接拉伸试验,当应变速率在4×10~(-6)~1×10~(-1) s~(-1)的范围内变化时:1.材料的初裂抗拉强度、初裂抗拉应变、拉伸弹性模量、极限抗拉强度和耗能能力都具有应变速率敏感性,其中除初裂抗拉应变随应变率升高而减小外,其它几项性能指标都显示出明显的动态强化效应;2.多缝开裂模式和极限抗拉应变对应变率不敏感,极限裂缝宽度始终在100μm以内,极限抗拉应变保持在3.7%左右;3.应变率对初裂抗拉强度、拉伸弹性模量、极限抗拉强度和耗能能力的动态增强效应都存在一个阈值(皆在1×10~(-3) s~(-1)附近),在应变率达到阈值之后,动态效应才更加显著;4.超高韧性水泥基复合材料具有明显优于混凝土的耗能能力,在地震荷载(对应应变率在1×10-4~1×10-2 s~(-1))作用下其耗能能力可达C20混凝土的1000倍。  相似文献   

15.
通过测量管道外壁应力应变大小来间接获得管道内压力值在实际工程应用中具有重要意义。在理论分析的基础上,利用ANSYS Workbench分析软件,建立管道的壁厚、长度、内径和材质等参数各异的多种有限元仿真模型,详细分析管道在内压作用下,管壁的应力应变特性。仿真结果表明,管壁应力应变与管道内压和内径大小成线性关系、与壁厚成非线性关系、且与管道长度无关,此外,对于相同管道内压,管壁应变随管道材质不同而变化,但管壁应力却不受影响。该仿真实验的设计与研究为后续的传感器研制和非接触管内压力测量提供了坚实的理论基础和必要的数据支撑。  相似文献   

16.
通过对三面围覆碳纤维布进行加固的钢筋混凝土T形梁的试验,探讨了梁的受弯破坏形态、极限状态和设计要求,并根据实测纤维布极限应变值,讨论了纤维布允许拉应变的取值问题。  相似文献   

17.
为了分析膨胀土地区路堤初始开裂行为,使用ABAQUS模拟了典型路基断面的路堤顶部张拉应力峰值和峰值位置的改变.模拟结果表明:基质吸力在膨胀土地基顶部呈凹形分布,并且引起了地基和路堤的不均匀变形.路堤顶部张拉应力峰值并非位于某一固定点,而是随着蒸发的持续逐渐朝路肩移动.蒸发强度越大,随着地表蒸发的进行,路堤顶面张拉应力峰值增大越快,其位置越靠近路肩;厚层膨胀土有助于路堤顶面张拉应力峰值快速到达其抗拉强度阈值,而膨胀土厚度小于1.5m时,地表蒸发30天,路堤不会开裂;路堤越高,路堤顶面张拉应力峰值越小,其位置越远离路肩.因此,薄层膨胀土土层上修筑较高路堤可以减少路堤裂缝的形成.  相似文献   

18.
借助有限元软件ANSYS,对钢筋混凝土简支梁在单调竖向荷载作用下进行受力全过程非线性计算,对超筋梁和适筋梁,提出分别以混凝土的极限压应变达到εcu和受拉钢筋的极限拉应变达到0.01作为达到极限承载力的判别标准;分析钢筋混凝土梁完整的破坏过程、力学特征,研究受压钢筋、配筋率和材料强度对梁极限承载力的影响,数值分析得出应用高强、高性能钢筋能提高资源利用效率,即截面承载力显著提高的同时,钢筋混凝土构件的延性并未降低等结论。  相似文献   

19.
本文以试验室配制的氨氮(NH3-N)溶液为研究对象,利用电催化氧化的方法对其进行试验研究,考察电催化氧化方法对氨氮溶液中氨氮的去除效果,研究并探讨了水体中氯离子含量对氨氮去除的影响,并分析了溶液温度、电流密度、电导率、pH值等参数的变化情况研究表明:电催化氧化方法对氨氮的去除有一定的效果;溶液中氯离子浓度越高,氨氮的降解速度越快;根据本文所述的试验条件,随着电解时间的增加,溶液温度、电流密度及电导率总体均呈增加趋势,pH值的变化趋势相反。  相似文献   

20.
为了对加速养护引起的普通混凝土抗氯盐渗透能力负效应进行改善,制作了4种掺矿物掺和料混凝土试件.在达到一定的初始强度后,试件被分别放入40,60和80℃水槽中进行加速养护.在28,100,200和300 d龄期,根据ASTM C1202试验标准测定了试件的电通量,同时还对部分试件进行了快速氯离子扩散系数和压汞实验.实验结果表明,加速养护会导致普通混凝土的抗氯盐渗透能力线性劣化,而通过掺加矿物掺合料能够改善混凝土的微观孔隙结构和负效应.对掺矿物掺合料混凝土而言,60℃是获得较优抗氯盐渗透能力的加速养护温度上限.20℃常温条件的预养护对减轻此负效应有利,同时随着测试龄期的增长混凝土中胶凝材料的不断水化负效应也得以减轻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号