首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
格·马·菲赫金哥茨著《数学分析原理》第二卷三分册256页里瑕积分定理中的区间[O, Q]是分为n等分,现用Riemann和的极限推证把区间任意分割仍正确定理设f(x)在肝[a,b]内是单调函数,且在x=b的左邻域内无界,若瑕积分存在,则对[a,b]的任意分割推证本定理,不妨设以)在〔。,b]上单调增加百先证:对区间卜,b、CE[C,bD的任意分割T:C一人<XI<……<X,=h,有S叮)乏f()七()事实上,依据定理条件显然有固定一个u>马,因趴)在卜个一*上可积,所以,对于卜人一U]的任意一个分割了,存在已>0,当人间”)<九时,…  相似文献   

2.
我们把f(x)<0(或)称为函数不等式。本文中出现的函数f(X)都是指初等函数。初等函数不等式的解法很多.下面我们介绍一种新的解法——零点法。由于初等函数的连续性.我们很容易得到:命题1函数f(x)在其定义域内的某区间(a.b)上,对任意x都有f(x)一0.那么,在区间(a.b)上二对任意x都有f(X)<0或f(X)>人函数f(X)在其定义域内有fi个零点.设为:XI.XZ,……Xu。把定义战用这些零点划分成X个连续的小区间.记为:UI.U…··Un。称为定义域的一个分划。那么,命题1就是说,在每个小区间上,对任意的X都有f()…  相似文献   

3.
一、变限积分及其导数设函数/(x)在区间[a,b]上连续,x为区间[a,则上的任意一点。由于八X)在区间,[b]上连续,因而在卜,XI上连续。因此定积分If(Odt存在。这个变上限的定积分叫做变上限积分。由于对每一个XE,则变上限积分V(Z)a都有一个确定的值与之对应,因此它是定义在卜,b]上的函数。定理如果函数f(x)在区间,[a,b]上连续,则变上限积分V(2)对上限X的导数,等于被积函数的上限X处的值,即包j(t)dt=f(1’)。该定理建立了导数与积分的联系,证明了连续函数存在原函数,并且指明变上限积分If(t)dt就是f(X)…  相似文献   

4.
一般数学分析教材已给出了如下定理:定理1若函数人均在闭区间(a、b)上有界且只有有限个间断点,则f(X)在{a、b)上可积。然而函数f(X)在闭区间(、bJ上有界且有无限多个间断点时,f(x)在(a、b)上却不一定可积。例如R3eman函数在(0·l)上有界,任意有理点是以功的间断点,但它在(0、l)上可积。(见文(l》又如Ditichelet函数在(0、l)上有界,一且处处不连续,它在(0、l)上不可积。(见文(l》这就引起我们思考,函数1(x)在闭区间上有界且有无限多个间断点时,附加什么条件可使f(x)在ta、匆上一定可积?本文给出这…  相似文献   

5.
研究了Riemann积分与Lebesgue之间的关系,在给出了正常Riemann积分与Lebesgue积分的联系的同时,重点研究了广义Riemann积分与Lebesgue积分的关系,即函数f(x)在[a,b]上Riemann可积时,f(x)在[a,b]上也Lebesgue可积,并且两积分分值相等;但广义Riemann积分与Lebesgue积分之间的关系则不尽然.当无穷积分或瑕积分在区间绝对收敛时,则函数f(x)在此区间也Lebesgue可积,并且两积分分值相等,当无穷积分或瑕积分在区间条件收敛时,则函数f(x)在此区间不Lebesgue可积.  相似文献   

6.
函数的极值问题、最值问题是数学分析的一个最基本,也是最重要的内容之一,这一问题在实际中有着广泛的应用。对一元函数而言,函数的极值点只可能是导数为零的点(对可导函数而言)或导数不存在的点,一般的教材中给出两个判断函数极值的方法.定理1若1(X)在X。的某一邻城(X。-b,X。十的内可导,则当XE(X。,X。十的时厂(x)<O(>0),而当XE(X。一乙X。)时,f’(X)>0(<0),那末f(x)在X。点有极大(小)值f(X。).定理2设厂(。)。O,f”(X。)存在,若fi/(X。)>0(<),则f00在点X。有极小(大)值f…  相似文献   

7.
创新类型1:隔离直线 已知函数.f(x)和g(x),若存在常数k和b,使得函数f(x)和g(x)对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤bx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.  相似文献   

8.
论证极限问题,一般对初学者都感到困难.而对较复杂的函数极限更棘手.本文通过用“ε-δ”极限定义推证多项式函数的极限,对研究和解决这类问题的学者以参考.先推证多项式函数的分解式:定理1设f(r)为n次实系数多项式,则f(x)-b总可表为L(x-a)P(x)+C.其中L、C均为常数,,b为有限实数,P(x)为n-l次多项式.注1”为主观易还,不妨设f(x)是首项系数为1的三次多项式,至干n次情况,用同样方法,通过数学归纳法得证.证明设1s则则这里故定理得证.注2”当首项系数L不为1(L一0)时,可提出L,变成f(X)一Lf;(X)…  相似文献   

9.
本文对一个较文[1]更广泛的函数类,即所谓(r,r’)──凹(凸)函数类,给出了它的一系列性质。1定义及其简单性质没f(x)是定义在(a,b)上的非负函数,其中a>0,b也可以是+,r>0,r’>0,若a<x1<x2<b,有成立,则称f(x)为(a,b)上的(r,r’)——凹函数;若(1)中不等号改变一下方向,则称f(x)为(a,b)上的(r,r’)——凸函数.由于讨论的类似性,本文主要就凹函数的情形加以讨论.首先指出(r,r’)——凹函数的一些简单性质:(1)(r,r’)——凹函数与正常数之积仍为(r,r’)——凹函数.但)若几句是单…  相似文献   

10.
黎曼(Riemann)引理是人们较为熟知的一个命题,本文拟将该命题给予推广,推广后的命题,应用于解决一些特型的定积分的极限问题非常便利。 1°Riemann引理及推广命题 Riemann引理 设函数f(x)在[a,b]上可积并绝对可积,则 (?)integral from n=a to b(f(x)sin(nx)dx)=0。 推广命题1 设函数f(x)在[a,b]上可积并绝对可积,则 (?)integral from n=a to b(f(x)sin~2(nx)dx)=1/2integral from n=a go b(f(x)dx),  相似文献   

11.
孙兰敏 《考试周刊》2012,(57):47-47
本文根据上凸函数的定义,证明了若f(x)是区间I内的上凸函数,则f(x)在区间I内连续,从而进一步得出结论:若f(x)是区间I内的上凸函数,则对任意的[a,b]奂I,f(x)在区间[a,b]上有界、可积.并说明了上凸函数的连续性、有界性和可积性.  相似文献   

12.
前不久,考了这么一道填空题:已知定义在R上的函数f(x)满足对任意的x1,x2∈R且x1≠x2,有f(x1)-f(x2)/x1-x2<0,设a=λ/1+λ,β=1/1+λ(λ≠±1),若有|f(a)-f(β)|>|f(1)-f(0)|,则λ的取值范围是___  相似文献   

13.
本文研究了一般Riemann积分(即k-重积分)与Lebesgue积分的关系,证明了:若函数f在有界闭域D属于R^k上Riemann可积,则f在D上Lebesgue可积且积分值相等.作为应用,讨论广义Riemann积分(即瑕积分与无穷限积分)与Lebesgue积分的关系.进而,给出了计算几类Lebesgue积分的方法.  相似文献   

14.
定积分是积分学的主要内容之一,定积分是一种特殊和式的极限,它以极限为基础,在科技、生产和经济各个领域里都有广泛的应用,在学习定积分过程中,对以下几个问题引起重视是必要的.1定积分概念中的问题1)作为教师应该能用“ε-δ”语言较准确地表述定积分的概念设y=f(x)是定义在Df=〔a,b〕上的函数,I是一个确定的数.若用点a=x0<x1<…<xi<xi+1…<xn=b分〔a,b〕为n份,称给〔a,b〕一个分法R.记△xi=xi+1-xi,λ=max{△xi},i=0,1…,n-1。选取:ξ∈〔xi,xi+1〕并作和,如果对任给的ε>0,总存在某一δ>0,使得…  相似文献   

15.
沈虎跃 《中学教研》2009,(10):34-36
2009年浙江省高中数学竞赛试题第20题: 题目设函数f(x)=3ax^2-2(a+b)x+b,其中a〉0,b为任意常数.证明:当0≤x≤1时,有|f(x)|≤max{f(0),f(1)}.  相似文献   

16.
命题1设f(X;,X。,…,Xu)”是任意给定的n元齐次斜对称多项式,则f(X;,X。··,,X一一定可以写成初等斜对称多项式与齐次对称多项式x(xl,x。,…,xu)的乘积。即f(XI,”。,··’,”一1。i<j。n(”i-”])”g(”l,“。,”“”,””)证明显然f(”l,”。,”“’,“n)”l。i<j。n(”i-“j)”g(“。,“。,’”’,”n)其中g(X;,X。,…,。一是一对称多项式。因为初等斜对称多项式l<i<j<n(“1-”J)是一齐次多项式,而f(X;,X。,…,。一是一齐次多项式故可谁得g(g;,…,X一一定是…  相似文献   

17.
第一天 1.设a>0,函数f:(0,+∞)→R满足f(a)=1.如果对任意正实数x、y,有f(x)f(y)+f(a/x)f(a/y)=2f(xy), 求证:f(x)为常数。  相似文献   

18.
在Fourier级数的收敛理论中 ,Riemann引理 (Riemann积分意义下 )起到了非常重要的作用 .在Directly_Riemann积分意义下 ,给出了Riemann定理 .即设f(x) ,g(x)是定义在 [0 ,+∞ )上非负 (D_R)可积函数 ,|g(x)|≤M ,对任意的区间 [0 ,A] [0 ,+∞ ) ,有∫A0g(x)dx ≤k ,则limp→+∞∫+∞0 f(x)g(px)dx =0 .  相似文献   

19.
拆项求最值     
对于不能直接运用均值定理处理的"积定和最小"问题,一个有效的方法是拆项.结论对于函数f(x)=x+a2/x(x∈R+,a为正常数),设b为正常数.(1)若bmin =f(b);(2)若b≥a,则当x∈[b,+∞)时,[f(x)]min=f(b).证明f(x)=x+a2/x =(x+b2/x)+(a2-b2)/x.(1)若b相似文献   

20.
1.新定义型对数函数的问题 例1定义:函数y=f(x),x∈D,若存在常数C,对于任意x1∈D,存在惟一的x2∈D,使得f(x1)+f(x2)/2=C,则称函数,f(x)在D上的“均值”为C.已知f(x)=lgx,x∈[10,100],则函数,f(x)=lgx在[10,100]上的均值为()。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号