首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many “very likely” to “almost certain” relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.  相似文献   

2.
Abstract

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.  相似文献   

3.
Abstract

Cerebral palsy is known to generally limit range of motion and force producing capability during movement. It also limits sprint performance, but the exact mechanisms underpinning this are not well known. One elite male T36 multiple-Paralympic sprint medallist (T36) and 16 well-trained able-bodied (AB) sprinters each performed 5–6 maximal sprints from starting blocks. Whole-body kinematics (250 Hz) in the block phase and first two steps, and synchronised external forces (1,000 Hz) in the first stance phase after block exit were combined to quantify lower limb joint kinetics. Sprint performance (normalised average horizontal external power in the first stance after block exit) was lower in T36 compared to AB. T36 had lower extensor range of motion and peak extensor angular velocity at all lower limb joints in the first stance after block exit. Positive work produced at the knee and hip joints in the first stance was lower in T36 than AB, and the ratio of positive:negative ankle work produced was lower in T36 than AB. These novel results directly demonstrate the manner in which cerebral palsy limits performance in a competition-specific sprint acceleration movement, thereby improving understanding of the factors that may limit performance in elite sprinters with cerebral palsy.  相似文献   

4.
ABSTRACT

The aims of this study were (a) to describe the kinematics underlying the phenomenon of the knee of the swing leg passing medially in front of the athlete during the single push (SP) phase of the block sprint start, and (b) to determine the relationships between block phase pelvis range of motion (RoM), 1st step width and block phase performance. Three-dimensional kinematic data (250 Hz) were collected from eleven competitive sprinters (100 m PB: 11.17 ± 0.41) performing maximal effort block starts. The joint angles of the rear hip with respect to the pelvis and the pelvis segment angles with respect to the laboratory coordinate system were calculated during the block start phase to the end of the 1st stance. A combination of pelvis list and rotation (not hip adduction) was coupled with the thigh of the swing leg moving medially during the SP phase. A very high positive correlation was found between pelvic list RoM and 1st step width (r = 0.799, p = 0.003). No other significant correlations were found. Attempting to reduce pelvic RoM or changing frontal and transverse plane hip joint angles to minimise medial thigh motion is unlikely to lead to an improvement to performance.  相似文献   

5.
短跑途中跑支撑阶段支撑腿关节肌肉生物力学特性的研究   总被引:5,自引:1,他引:4  
采用测力、测角加速度和多机多分辨拍摄技术对短跑途中跑支撑阶段肌肉动力学特征进行关节内力矩的计算与分析。研究表明,运动员踝关节跖屈肌的最大力矩与跑的速度呈显著相关;膝关节的伸肌在接近一半的支撑时间内是做离心收缩,离心收缩肌力矩的峰值要高于向心收缩的肌力矩峰值,离地前20%时刻膝关节屈肌起重要作用;髋关节在支撑阶段存在关节屈伸肌群交替工作,在着地后瞬间有较大的屈肌力矩,在离地前髋关节伸肌起重要作用,支撑阶段下肢关节肌肉快速退让性的离心收缩与主动收缩起同样重要的作用。  相似文献   

6.
The aim of this study was to examine the effects of muscle-tendon length on joint moment and power during maximal sprint starts. Nine male sprinters performed maximal sprint starts from the blocks that were adjusted either to 40 degrees or 65 degrees to the horizontal. Ground reaction forces were recorded at 833 Hz using a force platform and kinematic data were recorded at 200 Hz with a film camera. Joint moments and powers were analysed using kinematic and kinetic data. Muscle - tendon lengths of the medial gastrocnemius, soleus, vastus medialis, rectus femoris and biceps femoris were calculated from the set position to the end of the first single leg contact. The results indicated that block velocity (the horizontal velocity of centre of mass at the end of the block phase) was greater (P < 0.01) in the 40 degrees than in the 65 degrees block angle condition (3.39 +/- 0.23 vs. 3.30 +/- 0.21 m . s(-1)). Similarly, the initial lengths of the gastrocnemius and soleus of the front leg in the block at the beginning of force production until half way through the block phase were longer (P < 0.001) in the 40 degrees than in the 65 degrees block angle condition. The initial length and the length in the middle of the block phase were also longer in the 40 degrees than in the 65 degrees block angle condition both for both the gastrocnemius (P < 0.01) and soleus (P < 0.01-0.05) of the rear leg. In contrast, the initial lengths of the rectus femoris and vastus medialis of the front leg were longer (P < 0.05) in the 65 degrees than in the 40 degrees block angle condition. All differences gradually disappeared during the later block phase. The peak ankle joint moment (P < 0.01) and power (P < 0.05) during the block phase were greater in the 40 degrees than in the 65 degrees block angle condition for the rear leg. The peak ankle joint moment during the block phase was greater (P < 0.05) in the 40 degrees block angle for the front leg, whereas the peak knee joint moment of the rear leg was greater (P < 0.01) in the 65 degrees block angle condition. The results suggest that the longer initial muscle-tendon lengths of the gastrocnemius and soleus in the block phase at the beginning of force production contribute to the greater peak ankle joint moment and power and consequently the greater block velocity during the sprint start.  相似文献   

7.
Abstract

The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles.  相似文献   

8.
Muscle power patterns in the mid-acceleration phase of sprinting   总被引:3,自引:2,他引:1  
To assess the role of the lower limb joints in generating velocity in the mid-acceleration phase of sprinting, muscle power patterns of the hip, knee and ankle were determined. Six male sprinters with a mean 100 m time of 10.75 s performed repeated maximal sprints along a 35 m indoor track. A complete stride across a force platform, positioned at approximately 14 m into the sprint, was video-recorded for analysis. Smoothed coordinate data were obtained from manual digitization of (50 Hz) video images and were then interpolated to match the sampling rate of the recorded ground reaction force (1000 Hz). The moment at each joint was then calculated using inverse dynamics and multiplied by the angular velocity to determine the muscle power. The results showed a proximal-to-distal timing in the generation of peak extensor power during stance at the hip, the knee and then the ankle, with the plantar flexors producing the greatest peak power. Apart from a moderate power generation peak towards toe-off, knee power was negligible despite a large extensor moment throughout stance. The role of the knee thus appears to be one of maintaining the centre of mass height and enabling the power generated at the hip to be transferred to the ankle.  相似文献   

9.
Analysis of lower limb work-energy patterns in world-class race walkers   总被引:1,自引:1,他引:0  
The aim of this study was to analyse lower limb work patterns in world-class race walkers. Seventeen male and female athletes race walked at competitive pace. Ground reaction forces (1000 Hz) and high-speed videos (100 Hz) were recorded and normalised joint moments, work and power, stride length, stride frequency and speed estimated. The hip flexors and extensors were the main generators of energy (24.5 J (±6.9) and 40.3 J (±8.3), respectively), with the ankle plantarflexors (16.3 J (±4.3)) contributing to the energy generated during late stance. The knee generated little energy but performed considerable negative work during swing (?49.1 J (±8.7)); the energy absorbed by the knee extensors was associated with smaller changes in velocity during stance (r = .783, P < .001), as was the energy generated by the hip flexors (r = ?.689, P = .002). The knee flexors did most negative work (?38.6 J (±5.8)) and the frequent injuries to the hamstrings are probably due to this considerable negative work. Coaches should note the important contributions of the hip and ankle muscles to energy generation and the need to develop knee flexor strength in reducing the risk of injury.  相似文献   

10.
Abstract

This study investigated lower-limb kinematics to explain the techniques used to achieve high levels of sprint start performance. A cross-sectional design was used to examine relationships between specific technique variables and horizontal external power production during the block phase. Video data were collected (200 Hz) at the training sessions of 16 sprinters who ranged in 100 m personal best times from 9.98 to 11.6 s. Each sprinter performed three 30 m sprints and reliable (all intraclass correlation coefficients, ICC(2,3) ≥ 0.89) lower-limb kinematic data were obtained through manual digitising. The front leg joints extended in a proximal-to-distal pattern for 15 sprinters, and a moderate positive relationship existed between peak front hip angular velocity and block power (r = 0.49, 90% confidence limits = 0.08–0.76). In the rear leg, there was a high positive relationship between relative push duration and block power (r = 0.53, 90% confidence limits = 0.13–0.78). The rear hip appeared to be important; rear hip angle at block exit was highly related to block power (r = 0.60, 90% confidence limits = 0.23–0.82), and there were moderate positive relationships with block power for its range of motion and peak angular velocity (both r = 0.49, 90% confidence limits = 0.08–0.76). As increased block power production was not associated with any negative aspects of technique in the subsequent stance phase, sprinters should be encouraged to maximise extension at both hips during the block phase.  相似文献   

11.
The aim of this study was to relate the contribution of lower limb joint moments and individual muscle forces to the body centre of mass (COM) vertical and horizontal acceleration during the initial two steps of sprint running. Start performance of seven well-trained sprinters was recorded using an optoelectronic motion analysis system and two force plates. Participant-specific torque-driven and muscle-driven simulations were conducted in OpenSim to quantify, respectively, the contributions of the individual joints and muscles to body propulsion and lift. The ankle is the major contributor to both actions during the first two stances, with an even larger contribution in the second compared to the first stance. Biarticular gastrocnemius is the main muscle contributor to propulsion in the second stance. The contribution of the hip and knee depends highly on the position of the athlete: During the first stance, where the athlete runs in a forward bending position, the knee contributes primarily to body lift and the hip contributes to propulsion and body lift. In conclusion, a small increase in ankle power generation seems to affect the body COM acceleration, whereas increases in hip and knee power generation tend to affect acceleration less.  相似文献   

12.
This study quantified lower-limb strength decrements and assessed the relationships between strength decrements and performance fatigue during simulated basketball. Ten adolescent, male basketball players completed a circuit-based, basketball simulation. Sprint and jump performance were assessed during each circuit, with knee flexion and extension peak concentric torques measured at baseline, half-time, and full-time. Decrement scores were calculated for all measures. Mean knee flexor strength decrement was significantly (P < 0.05) related to sprint fatigue in the first half (R = 0.65), with dominant knee flexor strength (R = 0.67) and dominant flexor:extensor strength ratio (R = 0.77) decrement significantly (< 0.05) associated with sprint decrement across the entire game. Mean knee extensor strength (R = 0.71), dominant knee flexor strength (R = 0.80), non-dominant knee flexor strength (R = 0.75), mean knee flexor strength (R = 0.81), non-dominant flexor:extensor strength ratio (R = 0.71), and mean flexor:extensor strength ratio (R = 0.70) decrement measures significantly (P < 0.05) influenced jump fatigue during the entire game. Lower-limb strength decrements may exert an important influence on performance fatigue during basketball activity in adolescent, male players. Consequently, training plans should aim to mitigate lower-limb fatigue to optimise sprint and jump performance during game-play.  相似文献   

13.
Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.  相似文献   

14.
研究目的:探究拖重物跑训练手段对短跑运动员的身体素质、途中跑阶段的技术特征及下肢环节肌肉力量的影响,深入认识其对短跑途中跑技术和专项力量的作用机制。研究方法:对14名男子二级左右水平短跑运动员进行为期8周每周3次6%~10% BM负荷的拖重物跑训练,采用高速摄像分析法、等动肌力测试法分析运动员身体素质;支撑阶段髋、膝、踝关节运动学参数和下肢各环节肌肉力量实验前后的变化情况。结果:(1)实验后运动员30m、60m、立定跳远、立定三级跳远等身体素质及专项成绩显著提高;(2)步长、重心水平速度显著性提高,两大腿剪绞平均速度提高、单步时间减少;支撑阶段最小膝、踝角显著降低,角速度提高;(3)髋、膝关节伸/屈肌群PT/BW、AP除膝关节60°/sPT/BW值未见统计学意义,其余各角速度下PT/BW、AP均呈显著性差异,踝关节跖屈肌群各角速度下PT/BW值显著提高,跖屈肌群60°/s速度下AP提高,背屈肌群AP略降低。结论:适宜负荷的拖重物跑训练可显著改善短跑运动员运动素质、提高运动成绩;有利于提高髋关节剪绞-制动力量,使膝、踝关节处于低位超等长"屈蹬"状态;提高了髋、膝关节屈伸肌群快速主动收缩能力及踝关节跖屈肌群退让性快速收缩能力。  相似文献   

15.
The aims of this study were to evaluate the accuracy of centre of pressure (COP) data obtained during transition of load across the boundary between two force plates, and secondly to examine the effect of such COP data on joint kinetics during sprint running performances. COP data were collected from two piezoelectric force plates as a trolley wheel was rolled across the boundary between the plates. Position data for the trolley were collected using an opto-electronic motion analysis system for comparison with COP data. Mean COP errors during transition across the plate boundary were 0.003 ± 0.002 m relative to a control point. Kinematic and kinetic data were also collected from eight athletes during sprint running trials to demonstrate the sensitivity of the inverse dynamics analysis to COP error for the ground contact phase of the dynamic movement trials. Kinetic sensitivity to the COP error was assessed during the entire stance phase for the ankle, knee, and hip joints and was less than 5% and 3% for joint moment and power data, respectively. Based on the small COP error during transition across plate boundaries, it is recommended that foot contacts overlapping two force plates may be included in inverse dynamics analyses.  相似文献   

16.
Sprinting while towing a sled improves sprinting parameters, however, only kinematic and temporal–spatial variables have been reported. The purpose of this study was to determine how lower extremity joint moment impulses alter when towing a sled compared to normal walking. Twelve participants walked normally, walked while towing a sled with a 50% body weight load attached at the waist, and with a 50% body weight load attached at the shoulders. Joint moment impulses were calculated for the hip, knee, and ankle. A mixed-model ANOVA with a between-subject factor of limb and repeated measures of condition was used to compare differences between limbs and towing conditions for each joint. Towing a sled increased joint moment impulses at the hip, knee, and non-dominant ankle. When compared with normal walking waist attachment increased hip extension moment impulse by 214.5% ( ? 3.31 vs. ? 10.41 Nms/kg), and shoulder attachment increased knee extension moment impulse by 166.9% (4.62 vs. 12.33 Nms/kg). The dominant limb produced greater knee extension moment impulse (p < 0.001), while the non-dominant limb produced greater hip extension (p < 0.001) and ankle plantarflexion moment impulse (p < 0.001) across all conditions. Results suggest that walking while towing may increase hip and knee extension strength.  相似文献   

17.
Abstract

In an effort to investigate the force-time characteristics during the acceleration phase of the sprint start, eight male sprinters were used as subjects. Runs up to 3 m were analyzed from film, and force-time parameters were measured on a force platform. In a starting stance the reaction time of the group was .118 ± .016 s and the force production lasted .342 ± .022 s. The maximal resultant force at the moment of maximal horizontal force was 19.3 ± 2.2 N x kg1, and the direction of the force was 32 ± 7°. In the very last instant before leaving the blocks the velocity of the center of gravity was 3.46 ± .32 m x s?1. In the first contact after leaving the blocks there was a braking phase (.022 ± .005 s in duration) during which the average horizontal force was ?153 ± 67 N. The braking phase was observed despite the body center of gravity being horizontally ahead by .13 ± . 05 m with respect to the first contact point. The percentage of deceleration in running velocity during that phase was 4.8 ± 2.9%. In the propulsion phase the average horizontal force was great (526 ± 75 N), and it was produced for a relatively long time (.171 ± .035 s). Significant correlation coefficients were observed between force production and running velocity. These results suggest that braking/propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start.  相似文献   

18.
This investigation assessed whether a Technique Refinement Intervention designed to produce pronounced vertical hip displacement during the kicking stride could improve maximal instep kick performance. Nine skilled players (age 23.7 ± 3.8 years, height 1.82 ± 0.06 m, body mass 78.5 ± 6.1 kg, experience 14.7 ± 3.8 years; mean ± SD) performed 10 kicking trials prior to (NORM) and following the intervention (INT). Ground reaction force (1000 Hz) and three-dimensional motion analysis (250 Hz) data were used to calculate lower limb kinetic and kinematic variables. Paired t-tests and statistical parametric mapping examined differences between the two kicking techniques across the entire kicking motion. Peak ball velocities (26.3 ± 2.1 m · s?1 vs 25.1 ± 1.5 m · s?1) and vertical displacements of the kicking leg hip joint centre (0.041 ± 0.012 m vs 0.028 ± 0.011 m) were significantly larger (P < 0.025) when performed following INT. Further, various significant changes in support and kicking leg dynamics contributed to a significantly faster kicking knee extension angular velocity through ball contact following INT (70–100% of total kicking motion, < 0.003). Maximal instep kick performance was enhanced following INT, and the mechanisms presented are indicative of greater passive power flow to the kicking limb during the kicking stride.  相似文献   

19.
运用文献资料法、实验法和数理统计法,以10名辽宁省排球队女运动员为研究对象,获取受试者3步助跑后衔接跳跃扣球的起跳期在三维空间坐标中的轨迹和与地面的反作用力参数,以及髋关节、膝关节、踝关节的最大伸肌力矩和最大伸肌功率,研究排球不同扣球起跳下肢运动学的特征,为提高排球扣球起跳时的动作质量提供参考。结果表明:(1)后排先行脚、跟随脚的动作时间、动作总时间短于后排,后排起跳动作距离长于前排(P<0.01);(2)先行脚和跟随脚的髋关节、膝关节伸肌力矩后排大于前排(P>0.05);在踝关节伸肌力矩中,后排的先行脚大于前排(P>0.05),后排的跟随脚大于前排(P<0.05);(3)除先行脚的膝关节向心功率后排均小于前排外,先行脚和跟随脚的髋关节、膝关节、踝关节伸肌向心功率后排均大于前排。先行脚和跟随脚的髋关节、膝关节肌坏踝关节离心功率后排大于前排。  相似文献   

20.
Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8?±?6.8 years; 84.1?±?9.2?kg; 1.77?±?0.07?m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35?m?s?1±5% were measured before eccentric exercise (baseline) and, 24?h and 48?h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48?h (P?=?0.01; d?=?0.26), and peak knee extensor moment was reduced at 24?h (P?=?0.001; d?=?0.49) and 48?h (P?<?0.001; d?=?0.68) compared to baseline. Frontal and transverse plane biomechanics were unaffected by the presence of DOMS (P?>?0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24?h and 48?h (P?<?0.05). These findings suggest that knee extensor DOMS greatly influences sagittal knee joint angular kinetics and, reduces sagittal power production at the ankle joint. However, knee extensor DOMS does not affect frontal and transverse plane lower limb joint biomechanics during running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号